
Università degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica
Curriculum Computer Science and Information Technology

XXXVII Ciclo

Tesi di Dottorato / Ph.D. Thesis

Detecting Non-Functional Requirements
by exploiting NLP-based technologies and techniques

Francesco CASILLO

Supervisor: Prof. Carmine GRAVINO

Co-Supervisor: Prof. Vincenzo DEUFEMIA

PhD Program Director: Prof. Andrea DE LUCIA

A.A. 2023/2024

A B S T R A C T

The management of Non-Functional Requirements (NFRs) plays
an important role on the quality and stability of software systems.
NFRs, which cover aspects such as privacy, security, fairness, and
performance, are often challenging to identify and address during
early phases of software development. Failure to properly detect
and manage these requirements can lead to significant security vul-
nerabilities, privacy violations, and performance bottlenecks, which
may not be immediately evident but can severely affect the system
post-deployment. Despite their importance, NFRs are frequently
implicit in requirement documents, making their extraction from
unstructured text a complex task. In this context, the automation of
NFR detection is an essential step forward to assist developers in
recognizing and addressing these requirements efficiently, especially
in agile environments where time and expertise may be limited.

The goal of this thesis is to propose and assess a range of so-
lutions to automate the detection and classification of NFRs from
software requirements documents. By leveraging state-of-the-art Nat-
ural Language Processing (NLP) techniques, Machine Learning (ML)
and Deep Learning (DL) approaches, this work aims to tackle the
problem of NFR identification from multiple perspectives, providing
tailored solutions for the different types. The objective is to create
a set of methodologies that can detect various NFRs in their early
stages, mitigating risks related to privacy, security, fairness, and other
non-functional aspects of software systems.

The first NFR analyzed is privacy, which has become a pressing
concern in software engineering due to increasing data protection
regulations, such as the General Data Protection Regulation (GDPR).
This thesis introduces a Deep Learning-based approach that combines
traditional NLP techniques with Transfer Learning to automatically
identify privacy requirements when the latter are defined as User
Stories. Specifically, Convolutional Neural Networks (CNNs) are
employed to extract semantic features from textual descriptions,

iii

allowing the model to recognize privacy-related information even
when it is not explicitly stated. The system was tested on a dataset
of User Stories and demonstrated its ability to detect privacy issues
with a high degree of Accuracy, providing developers with crucial
insights early in the development lifecycle.

The second aspect focuses on security requirements, a vital NFR
given the growing threats of cyber-attacks and system vulnerabilities.
Addressing the challenge of identifying security-related requirements
in unstructured documents, in this work domain-specific approaches
are contrasted with advanced domain-independent solutions. The
research shows that while shallow ML models can be effective in
specific contexts, Transformer-based models significantly improve
the generalizability of security requirement detection across different
software projects. This approach ensures that security considerations
are not overlooked, even when requirements are vague or incomplete
and independently from the software application context.

With the increasing integration of ML algorithms in decision-
making systems, fairness has emerged as a novel NFR. ML systems
can reproduce biases present in historical data, leading to unethical
outcomes. This thesis explores fairness requirements by introducing
ReFAIR, a context-aware recommender system designed to detect
fairness concerns from User Stories. Using NLP and Word Embed-
ding techniques, ReFAIR analyzes the domain and task of the system
being developed to identify sensitive attributes and potential sources
of bias. This approach provides developers with early-stage recom-
mendations on how to address fairness issues, contributing to the
development of fair and unbiased ML systems.

Lastly, the thesis investigates the use of Quantum Natural Lan-
guage Processing (QNLP) for the classification of multiple NFRs,
including performance, usability, and operability. As an exploratory
study, this research examines the potential of quantum computing
to handle the linguistic complexity of NFRs with smaller datasets, a
limitation of many traditional NLP approaches. By comparing shal-
low ML models using Word Embeddings (e.g., GloVe, Word2Vec)
with quantum circuit-based models, the study highlights the advan-
tages and current limitations of quantum methods in NFRs detection.
While ML models still outperform quantum approaches in terms

iv

of performance, QNLP offers promising insights, particularly in
handling NFRs classification tasks where data volume is an issue.

Through the exploration of these diverse approaches, this thesis
contributes to the field of Requirements Engineering by providing
automated NLP-based solutions for the detection of key NFRs. These
findings pave the way for future work in automating NFR identi-
fication using diverse technologies, including quantum computing,
to ensure that non-functional aspects are considered into software
systems from the earliest stages of development.

v

C O N T E N T S

Inferno

1 The Need for Automating Non-Functional Requirements
Detection . 3

1.1 Research Gaps . 4

1.2 Research Statement 6

1.3 Thesis Structure and Contributions 8

List of Publications . 12

2 Background . 15

2.1 Non-Functional Requirements Classification . . 15

2.2 Privacy and Security Requirements Identification 18

2.3 Fairness as Non-Functional Requirement 22

Purgatorio

3 Detecting Privacy Requirements from User Stories . . 27

3.1 Introduction . 27

3.2 Methodology . 28

3.2.1 User Stories as Input 29

3.2.2 Lexicon-Based Privacy Features 29

3.2.3 NLP-Based Features 30

3.2.4 Deep Neural Network Architectures . . . 31

3.2.5 Transfer Learning for Privacy Disclosure De-
tection . 32

3.3 Empirical study design 33

3.3.1 Research Questions 33

3.3.2 Data Collection 35

3.3.3 Evaluation Criteria 37

3.3.4 Validation Method 39

3.4 Analysis of the Results 40

3.4.1 Is CNNNLP accurate at least as conventional
machine learning methods to detect privacy
content when using NLP-based features? 40

vii

viii contents

3.4.2 Is CNNPW accurate at least as conventional ma-
chine learning methods to detect privacy con-
tent when using PW features? 43

3.4.3 Are predictions obtained with PDTL better than
those achieved with CNNNLP and CNNPW? 45

3.5 Findings for Researchers and Practitioners . . . 47

3.6 Threats to Validity 48

4 ReFAIR: a Context-Aware Recommender for Fairness in
RE . 51

4.1 Introduction . 51

4.2 Building a Dataset of User Stories 53

4.2.1 Requirements Format Selection 53

4.2.2 A Taxonomy of Fairness-Related Application
Domains and ML Tasks 54

4.2.3 Synthetic Generation of User Stories . . . 57

4.2.4 Synthetic Dataset Validation 60

4.3 The ReFair Framework 61

4.3.1 User Story Preprocessing 63

4.3.2 Classification Analysis 64

4.3.3 Sensitive Features Recommendation . . . 65

4.3.4 Prototypical Implementation 65

4.4 Empirical Evaluation 66

4.4.1 Addressing RQFair1: The ReFair Application
Domain Classification Performance . . . 67

4.4.2 Addressing RQFair2: The ReFair Machine Learn-
ing Tasks Classification Performance . . 70

4.4.3 Addressing RQFair3: The ReFair Sensitive Fea-
ture Recommendation Capabilities 72

4.5 Threats to Validity 73

5 Beyond Domain Dependency in Security Requirements
Identification . 79

5.1 Introduction . 79

5.2 Empirical Study Design 82

5.2.1 Research questions 82

5.2.2 Datasets 89

5.2.3 Evaluation criteria 92

contents ix

5.3 Results and Discussion 94

5.3.1 RQSec1 How effectively can shallow machine
learning algorithms, based on word embed-
dings, identify security-related requirements
coming from the same domain? 95

5.3.2 RQSec2 How effectively can shallow machine
learning algorithms, based on word embed-
dings, identify security-related requirements
coming from different domains? 100

5.3.3 RQSec3 How effective can pre-training context
in BERT transformers be on the detection of
security-related requirements? 107

5.3.4 Implications 112

5.4 Threats to validity 114

6 Quantum Natural Language Representations for NFRs Clas-
sification . 117

6.1 Introduction . 117

6.2 Introduction to Quantum NLP 121

6.3 Empirical Study Design 129

6.3.1 Motivations of Research Questions 129

6.3.2 Dataset . 131

6.3.3 Research Methodology 132

6.3.4 Evaluation Criteria 143

6.4 Analysis of the Results 144

6.4.1 RQN f r1. How effectively can shallow machine
learning algorithms classify non-functional re-
quirements when represented with word em-
beddings techniques? 144

6.4.2 RQN f r2. How effectively can a basic model clas-
sify non-functional requirements when repre-
sented as string diagrams and parameterised
as tensor networks? 147

6.4.3 RQN f r3. How effectively can quantum models
classify non-functional requirements when rep-
resented as string diagrams and parameterised
as quantum circuits? 151

6.5 Discussion and Research Roadmap 157

x contents

6.5.1 Lesson learned 157

6.5.2 Future Research Directions 162

6.6 Threats to Validity 165

Paradiso

7 Discussion and Research Directions 169

7.1 Answers to Research Questions 169

7.2 Findings of the research 172

7.3 Implications for researchers and practitioners . 176

7.3.1 For Researchers 176

7.3.2 For Practitioners 178

8 Conclusion . 181

Online Material . 185

Bibliography . 187

L I S T O F F I G U R E S

Figure 1.1 Mapping each chapter to each document and
RQs addressed. 8

Figure 2.1 Number of papers for the type of task and
problem addressed. 19

Figure 2.2 Employed document types. 20

Figure 3.1 Example US with words related to the Open-
Visible privacy category highlighted. . . 29

Figure 3.2 The CNNNLP architecture. 31

Figure 3.3 The CNNPW architecture. 31

Figure 3.4 The PDTL architecture leveraging transfer learn-
ing. 32

Figure 3.5 Partitions of the dataset for each type of US. 37

Figure 3.6 Accuracy values for all runs (RQPri1). . 42

Figure 3.7 F1-score values for all runs (RQPri1). . . 42

Figure 3.8 Accuracy values of all the runs (to answer
RQPri2). 44

Figure 3.9 F1-score values of all the runs (to answer RQPri2). 44

Figure 3.10 Accuracy values of all the runs (to answer
RQPri3). 46

Figure 3.11 F1-score values of all the runs (to answer RQPri3). 46

Figure 4.1 An overview of the USs Dataset Generation
Process. 54

Figure 4.2 Snippet of the augmented taxonomy built. 57

Figure 4.3 Example of solution-oriented US generated. 60

Figure 4.4 Example of problem-oriented US generated. 60

Figure 4.5 ReFair: An overview of the proposed ap-
proach. 62

Figure 4.6 ReFair: Running Example. 66

Figure 5.1 Procedure employed to address RQSec1 and
RQSec2. 83

Figure 5.2 Procedure employed to address RQSec3. 89

xi

xii list of figures

Figure 6.1 The general pipeline implemented through
lambeq. 122

Figure 6.2 Hierarchy of experimental applications in lam-
beq. 126

Figure 6.3 Process applied to address RQN f r1. . . . 134

Figure 6.4 Process applied to address RQN f r2. . . . 136

Figure 6.5 Requirement parsed with Bobcat Parser. 137

Figure 6.6 Requirement parsed with Cups Reader. 137

Figure 6.7 Example of requirements converted in string
diagram. 137

Figure 6.8 Requirement parsed with Bobcat Parser and
parameterized with Tensor Ansatz. . . . 138

Figure 6.9 Requirement parsed with Cups Reader and
parameterized with Tensor Ansatz. . . . 138

Figure 6.10 Examples of output of Tensor Ansatz from
string diagrams. 138

Figure 6.11 Process applied to address RQN f r3. . . . 139

Figure 6.12 Requirement parsed with Bobcat Parser and
rewritten with Unify Codomain and Remove
Cups rewriters. 140

Figure 6.13 Requirement parsed with Cups Reader and
and rewritten with Unify Codomain and Re-
move Cups rewriters. 140

Figure 6.14 Examples of output of Rewriting phase from
string diagrams. 140

Figure 6.15 Parameterised circuit from diagram in Figure
6.5. 142

Figure 6.16 Parameterised circuit from diagram in Figure
6.6. 142

Figure 6.17 Parameterised circuit from diagram in Figure
6.12. 142

Figure 6.18 Parameterised circuit from diagram in Figure
6.13. 142

Figure 6.19 Examples of output of IQP Ansatz from string
diagrams. 142

Figure 6.20 Performance in training with BCE on training
set (left) and validation set (right). . . . 148

Figure 6.21 Performance in training with CE on training
set (left) and validation set (right). . . . 148

Figure 6.22 Performance during training with Bobcat-based
tensor networks. 148

Figure 6.23 Performance in training with BCE on training
set (left) and validation set (right). . . . 149

Figure 6.24 Performance in training with CE on training
set (left) and validation set (right). . . . 149

Figure 6.25 Performance during training with Cups-based
tensor networks. 149

Figure 6.26 Performance with Bobcat-based quantum cir-
cuits on training set (left) and validation set
(right). 152

Figure 6.27 Performance with Cups-based quantum cir-
cuits on training set (left) and validation set
(right). 152

Figure 6.28 Performance during training with Numpy model
on quantum circuits. 152

Figure 6.29 Performance with Bobcat-based quantum cir-
cuits on training set (left) and validation set
(right). 155

Figure 6.30 Performance with Cups-based quantum cir-
cuits on training set (left) and validation set
(right). 155

Figure 6.31 Performance during training with Tket model
on quantum circuits. 155

Figure 6.32 Roadmap for unexplored application of Quan-
tum NLP for the NFRs classification task. 162

L I S T O F TA B L E S

Table 3.1 Privacy category of “access” and “share” [219]. 29

xiii

xiv list of tables

Table 3.2 Parts-of-speech and dependencies extracted
from an example US. 30

Table 3.3 Properties of the datasets used for the re-
search. 36

Table 3.4 Results achieved with each model to answer
RQPri1 in terms of accuracy and F1-score. 41

Table 3.5 Results achieved with each model to answer
RQPri2, in terms of accuracy and F1-score. 43

Table 3.6 Results achieved with each model to answer
RQPri3, in terms of accuracy and F1-score. 45

Table 4.1 Domain classifier selection - Experimental Re-
sults. ET = Extra Trees, SVC = Support Vector
Classification, CCCV = Calibrated Classifier
CV, XGBC = XGB Classifier, BC = Bagging
Classifier, DT = Decision Tree, LR = Logis-
tic Regression, LSVC = Linear SVC, LDA =
Linear Discriminant Analysis. 68

Table 4.2 Machine Learning Task classifier selection -
Experimental Results 71

Table 5.1 Requirements specifications considered in our
empirical study. 90

Table 5.2 List of datasets used for training and test in
each research question. 92

Table 5.3 Results obtained by the built combinations
of word-embedder and ML models on the
different datasets, for the inter-domain se-
curity requirements. NuSVC = Nu-Support
Vector Classification; LR = Linear Regression;
RidgeCV = Ridge regression with built-in Cross-
Validation; LGBM = Light Gradient Boosting
Machine; XGB = eXtreme Gradient Boosting;
ET = Extra Trees; SVC = Support Vector Clas-
sification. 96

Table 5.4 Results from GridSearchCV on the combination
Word2Vec and NuSVC. 97

list of tables xv

Table 5.5 Results from Ensemble on the combination
Word2Vec and NuSVC, Logistic Regression,
and Ridge Classifier CV. 98

Table 5.6 Results in terms of Precision, Recall, and F1-
score achieved with Ensemble on the combina-
tion Word2Vec and NuSVC, Logistic Regres-
sion, and Ridge Classifier CV, compared with
the results obtained by Li and Chen [117]. 99

Table 5.7 Results obtained by the built combinations of
word-embedder and ML models on the dif-
ferent datasets, for the intra-domain security
requirements. PAC = Passive Aggressive Clas-
sifier; LSVC = Linear SVC; LP = Label Propa-
gation; LS = Label Spreading; LDA = Linear
Discriminant Analysis; QDA = Quadratic Dis-
criminant Analysis 101

Table 5.8 Results from GridSearchCV on the combination
Word2Vec and PAC. 101

Table 5.9 Results from Ensemble on the combination
Word2Vec and PAC, Linear SVC, and Percep-
tron. 102

Table 5.10 Results in terms of Precision, Recall, and F1-
score achieved with GridSearchCV on the com-
bination Word2Vec and PAC compared with
the results obtained by Li and Chen [117] 106

Table 5.11 Results from different pre-training setups of
BERT to detect security requirements. . 107

Table 5.12 Inference performances of pre-trained BERT
models on the industrial specifications. 108

Table 5.13 McNemar test results. 108

Table 5.14 Results in terms of Precision, Recall, and F1-
score achieved with CweCveCodeBERT com-
pared with the results of Mohamad et al. [151]
and Munaiah, Meneely, and Murukannaiah
[154] . 110

Table 6.1 Details of the PROMISE expanded dataset.133

xvi list of tables

Table 6.2 Comparison of selected word embedding techniques

with ML models. 146

Table 6.3 Best models based on TF-IDF. 146

Table 6.4 Test on hold out set of Random Forest Classifier. . . . 146

Table 6.5 Best models based on BERT. 146

Table 6.6 Test on hold out set of Ridge Classifier CV. 146

Table 6.7 Best models based on fastText. 146

Table 6.8 Test on hold out set of SVC. 146

Table 6.9 Best models based on Word2vec. 146

Table 6.10 Test on hold out set of Random Forest Classifier. . . . 146

Table 6.11 Best models based on GloVe. 146

Table 6.12 Test on hold out set of NuSVC. 146

Table 6.13 Comparison of Pytorch models trained on Bobcat-based

tensor networks. 150

Table 6.14 Results using BCE with Logits Loss during training and test on

hold out set. 150

Table 6.15 Results using CE Loss during training and test on hold out

set. 150

Table 6.16 Comparison of Pytorch models trained on
Cups-based tensor networks. 151

Table 6.17 Results using Binary Cross Entropy with Logits Loss

during training and test on hold out set. 151

Table 6.18 Results using Cross Entropy Loss during training and

test on hold out set. 151

Table 6.19 Comparison of Numpy models trained on
quantum circuits. 154

Table 6.20 Results using Numpy models with train on Bobcat-based quan-

tum circuits and test on hold out set. 154

Table 6.21 Results using using Numpy models with train on Cups-based

quantum circuits and test on hold out set. 154

Table 6.22 Comparison of Tket models trained on quan-
tum circuits. 156

Table 6.23 Results using Tket model with train on Bobcat-based quantum

circuits and test on hold out set. 156

Table 6.24 Results using Tket model with train on Cups-based quantum

circuits and test on hold out set. 156

PA RT I

I N F E R N O

“Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura,

ché la diritta via era smarrita.

Ahi quanto a dir qual era è cosa dura
esta selva selvaggia e aspra e forte
che nel pensier rinova la paura!

Tant’è amara che poco è più morte;
ma per trattar del ben ch’i’ vi trovai,
dirò de l’altre cose ch’i’ v’ho scorte.

Io non so ben ridir com’i’ v’intrai,
tant’era pien di sonno a quel punto

che la verace via abbandonai.”

Dante Alighieri, Inferno, Canto I, vv. 1 - 12.

1
T H E N E E D F O R AU T O M AT I N G N O N - F U N C T I O N A L
R E Q U I R E M E N T S D E T E C T I O N

Requirements Engineering (RE) phase in software development re-
volves around the elicitation, analysis, and specification of Functional
and Non-Functional requirements (NFRs) that a software system
must guarantee to its users [24, 164, 202]. While Functional Require-
ments (FR) describe the system’s functionalities, NFRs define how
well the system should perform, focusing on quality attributes like
security, privacy, performance, usability, and so on [44, 167]. Despite
their critical importance, NFRs are often under-prioritized during
early development stages due to their abstract nature [160, 229], even
though they impact the quality of software systems, ensuring they
meet security, privacy, and performance standards [204]. Lacks in
considering NFRs can result in severe consequences, such as security
vulnerabilities or privacy breaches, which can lead to financial losses,
system failures, and legal implications [13, 135]. For example, the
infamous Equifax data breach1 highlighted the catastrophic results
of overlooking security NFRs. Similarly, privacy requirements have
gained prominence with the enforcement of the General Data Protec-
tion Regulation (GDPR), necessitating strong privacy considerations
during system design [191]. Furthermore, the rise of AI-driven sys-
tems has amplified the need for fairness as an NFR, particularly in
avoiding biases that could perpetuate social inequalities [206].

Ensuring the early detection and management of NFRs is therefore
vital for reducing risks and ensuring long-term system sustainability.
Delaying the identification of NFRs until later stages, such as testing
or deployment, can lead to substantial costs due to reengineering and
refactoring [229]. For example, it is estimated that fixing a security
vulnerability after release can be up to 30 times more expensive than
addressing it during the design phase [18].

1 The Equifax Data Breach: An Overview and Issues for Congress. Accessed October
2024. https://crsreports.congress.gov/product/pdf/IN/IN10792

3

https://crsreports.congress.gov/product/pdf/IN/IN10792

4 the need for automating non-functional requirements detection

Thus, the earlier NFRs are detected, the fewer resources are re-
quired to address them, as issues can be resolved before they affect
critical aspects of the system. Despite this, traditional methods of
NFR elicitation remain heavily dependent on manual processes such
as stakeholder interviews and document analysis, which are time-
consuming, error-prone, and unsuitable for large-scale systems [40].

Given the growing scale and complexity of modern software sys-
tems, relying solely on manual approaches for NFR detection is no
longer sustainable and efficient. This has led interest in automated
approaches based on Natural Language Processing (NLP), which can
efficiently process and extract NFRs from large volumes of text, such
as User Stories (USs) and system specifications [195].

1.1 research gaps

While Machine Learning (ML) and NLP-based approaches have
shown promise in automating NFR detection, they come with several
limitations. Traditional ML models like Support Vector Machines
(SVMs) have been used for classifying NFRs but struggle with the
implicit and vague language used in NFR documentation [16, 124].
These methods also require substantial amounts of labeled data,
which can be difficult to obtain in real-world development environ-
ments [180].

Many existing tools are predominantly focused on functional re-
quirement verification, leaving non-functional aspects like privacy,
security, and performance either undetected or relegated to manual
review [75]. Furthermore, existing NLP models struggle to capture
the implicit nature of NFRs, often leading to incomplete or inaccu-
rate detection results [100, 136]. Indeed, existing approaches rely on
basic keyword matching techniques or statistical lexical evidence,
which fail to capture the complex semantics and trade-offs between
different NFRs. For example, balancing security with usability often
requires nuanced understanding that cannot be captured by simple
keyword searches [103]. This gap is particularly pronounced in do-
mains where NFRs are critical, such as healthcare, financial systems,

1.1 research gaps 5

and AI-driven applications, where missing a key NFR can result in
catastrophic failures or unexpected system behaviors [111, 158, 165].

Deep Learning (DL) techniques, including Transformer-based ar-
chitectures like BERT (Bidirectional Encoder Representations from
Transformers) [56] and GPT (Generative Pre-trained Transformers)
[176], have demonstrated substantial improvements in NLP tasks.
However, when applied to the detection of NFRs, these models face
certain limitations. While Transformers excel in capturing contex-
tual embeddings and improving language understanding, they still
struggle with the implicit and abstract nature of NFRs, which are
often hidden in vague or incomplete requirements documents [33].
For example, while a functional requirement might be explicitly
stated as “The system shall allow users to log in using a username
and password”, the associated security NFR might only be implied
through references to “Sensitive data” or “Access control”. Trans-
formers struggle to detect such implicit NFRs without extensive
fine-tuning or domain-specific pre-training.

Another challenge is that DL models may require large, anno-
tated datasets to perform effectively. In the case of NFRs, datasets
are scarce, and even when they are available, the requirements are
context-dependent and domain-specific, making it difficult for trans-
formers to generalize across different projects or industries [180].

Additionally, Transformer-based models are computationally ex-
pensive and may overfit on smaller datasets. In the context of NFR de-
tection, where annotated examples are limited, this may lead to poor
generalization, particularly when dealing with the diverse linguistic
structures present in real-world requirements documents [218]. For
example, a system might need to be “secure” or “performant”, but the
specific mechanisms or metrics that define security or performance
are often missing. Current approaches that rely on keyword-based
approaches are unable to handle this semantic complexity, resulting
in either an over-reliance on shallow pattern recognition or missed
opportunities to detect critical NFRs [229]. Moreover, the documenta-
tion available for NFRs is sparse or incomplete, making it difficult
for traditional models to perform well.

Lastly, the generalizability of existing NFR detection models is
another key gap. Many tools and approaches are tailored to specific

6 the need for automating non-functional requirements detection

domains, such as enterprise applications or consumer-facing web
services, but struggle to generalize to other sectors like embedded sys-
tems, critical infrastructure, or high-assurance AI applications [180].
This lack of generalizability limits the effectiveness of automated
NFR detection across the wide variety of software systems being
developed today. New methods are needed to build domain-agnostic
models that can accurately detect NFRs across various industries and
application types without significant reconfiguration or retraining.

In summary, the main gaps found in literature are the following:
. Gap 1: The language structure by which the requirements are
defined is not much considered.
. Gap 2: Basic keyword matching or statistical lexical frequencies
techniques fail to capture the complex semantics and trade-offs be-
tween different NFRs.
. Gap 3: The best performances have been achieved with high
computational cost solutions.
. Gap 4: Limited amount of labeled data.
. Gap 5: The approaches lack of generalizability across domains.

1.2 research statement

The goal of this thesis is to design, implement and evaluate new
solutions and technologies to address the task of NFRs detection with
the aim of broadening the spectrum of viable solutions in modern
development contexts. The purpose is to provide engineers with new
ways to deal with NFRs as early as possible in software development
to reduce the cost and effort required if they are not properly consid-
ered in the requirements analysis phase. The research is conducted
taking into account the perspective of both practitioners and re-
searchers. In particular, practitioners are interested in the suitability,
usability and integrability of such automated approaches in their
workflow, already based on different technologies and methodolo-
gies. Researchers, on the other hand, are interested in expanding the
information that can be exploited to improve efficiency and accuracy
in detecting NFRs, thus expanding the pool from which to extract
knowledge according to the quality of the software being detected.

1.2 research statement 7

This thesis achieves its goal by answering three high-level research
questions (RQs), each one representing a pillar of this research and
filling the research gaps mentioned above:

Û RQA To what extent can analyzing the structure of requirement
language enhance the detection of NFRs?

Û RQB How much can the availability of hardware resources
counterbalance the data scarcity?

Û RQC To what extent can we introduce domain agnostic NLP-
based technologies and techniques?

While the RQs are broadly applicable to various NFRs, this disser-
tation focuses on privacy, security, and fairness. These NFRs were
chosen based on their increasing relevance in recent years, as iden-
tified in the Systematic Literature Review conducted in this study
[32]. Privacy and security have long been critical concerns in software
development, reinforced by regulations such as GDPR, while fairness
is an emerging yet under-explored NFR in the context of RE. The
lack of established methods for supporting fairness requirements,
coupled with its growing significance in AI-based decision-making
systems, justifies its inclusion alongside privacy and security.

The selection of multiple NFRs, rather than a singular focus, is mo-
tivated by the need to evaluate NLP-based solutions across different
types of NFRs. This allows for a broader assessment of how such
techniques perform in varying contexts—ranging from explicit, well-
documented NFRs like security to more implicit and context-sensitive
ones like fairness. Furthermore, by considering multiple NFRs, this
dissertation explores the NFRs detection as a multi-class classification
task, where different NFRs may coexist or interact within the same
requirements specification.

Part II of this dissertation presents different methodologies applied
to distinct NFRs. Each chapter corresponds to a specific scenario and
is mapped to its respective publication, a mapping that is explicitly
detailed in the following section.

8 the need for automating non-functional requirements detection

1.3 thesis structure and contributions

This dissertation advances the literature in NFRs detection in dif-
ferent manners. Firstly, in Part I, namely Inferno, it introduces the
problem with its importance, limitations and how this research face
it in Chapter 1, to then summarizing the state-of-the-art in Chapter
2, providing an overview of the approaches proposed when dealing
with the NFRs classification task, privacy and security requirements
identification and fairness consideration in early software develop-
ment stages.

RQA

Chapter 3

Chapter 4

Chapter 5

Chapter 6

RQCRQB

RQCRQB

RQC

RQA RQB

Figure 1.1: Mapping each chapter to each document and RQs addressed.

1.3 thesis structure and contributions 9

Then, in Part II, namely Purgatorio, it reports novel solutions when
dealing with privacy concerns, fairness considerations and security
issues, respectively presented in Chapters 3, 4, 5, each one reported
in a scientific publication [J1, C3, J3]. In Chapter 6 is presented an at-
tempt to NFRs detection when modeled as a multiclass classification
task, introducing a novel method to represent requirements [J4].

Lastly, in Part III, namely Paradiso, it presents a discussion on the
lesson learned, how to take advantage of such findings and open
issues that need to be addressed in Chapter 7. Chapter 8 concludes
the thesis. All the research presented in this thesis supports open
science by making all experimental materials publicly accessible. This
includes raw data, reusable datasets, and reproducible scripts, which
are provided through online appendices. Additionally, pre-prints of
the published articles are made available online.

Main Contributions In the following are summarized the research
works discussed in this thesis and how they contributed to address
the problems described in previous sections. The thesis makes four
key contributions, each mapped in the relative Chapter (Ch.):

Ch. 3 Detecting privacy requirements from User Stories with NLP
transfer learning models

An empirical study to assess the effectiveness of an automated
approach to identify privacy requirements embedded in ag-
ile USs. By utilizing Transfer Learning, this research enhances
detection accuracy by transferring knowledge from a privacy-
sensitive detector in unstructured text sources. In particular, the
approach combines NLP techniques aimed to inform a CNN
with entity tokens, syntactic structure and parts of speech,
and with a privacy lexicon to capture implicit privacy con-
cerns in different contexts, providing an effective solution for
privacy-aware requirements engineering in agile development
environments. Empirical evaluation demonstrates a significant
performance improvement over traditional methods when con-
sidering the language structure features. This work answers
RQA and RQC, addressing Gap 1, Gap 2 and Gap 5. This study
has been published in Information and Software Technology
(IST) journal.

10 the need for automating non-functional requirements detection

Ch. 4 ReFAIR: Toward a Context-Aware Recommender for Fairness
Requirements Engineering

An implementation of a context-aware framework designed to
support fairness requirements engineering. ReFAIR uses NLP
and word embeddings to classify sensitive features from USs
by identifying the application domains of the system and the
ML tasks or AI-based solutions intended to be integrated or
implemented. This innovative framework helps requirements
engineers address fairness concerns early in the development
lifecycle by recommending sensitive features that are contex-
tually relevant to each project. Empirical validation shows Re-
FAIR’s high accuracy, demonstrating its potential as a practical
tool for considering fairness already into RE phases. This work
answers RQB and RQC, addressing Gap 2, Gap 3 and Gap 4.
This study has been presented at 46th International Conference
on Software Engineering (ICSE ’24).

Ch. 5 Beyond Domain Dependency in Security Requirements Iden-
tification

A large empirical study on the effectiveness of different method-
ologies based on both shallow ML and advanced BERT-based
models to automatically detect security requirements across
different domains. By leveraging word embeddings and ML
algorithms or pre-trained models on datasets like Common
Weakness Enumeration (CWE) and Common Vulnerabilities
and Exposures (CVE), this work tries to analyze and achieve
domain independence, allowing it to accurately classify secu-
rity requirements without relying on extensive domain-specific
data. Empirical results demonstrate the model’s superior per-
formance in both intra-domain and inter-domain contexts, pro-
viding a significant step forward in automated, adaptable se-
curity requirements detection. This work answers RQB and
RQC, addressing Gap 3, Gap 4 and Gap 5. This study has
been published in Information and Software Technology (IST)
journal.

1.3 thesis structure and contributions 11

Ch. 6 A First Eye on the Impact of Quantum Natural Language Rep-
resentations for Non-Functional Requirements Classification

An experimentation of novel textual representations techniques
with the aim to explore the potential of Quantum Natural Lan-
guage Processing for classifying NFRs. This work introduces
three novel approaches: shallow ML models with word em-
beddings, tensor network-based representations using string
diagrams, and quantum circuit-based models. Each method
is tested on a multiclass NFR classification task, showing that
while traditional approaches based on word embeddings and
ML algorithms still lead in performance, string diagrams and
quantum models demonstrate promising potential for handling
complex linguistic structures, opening new pathways for in-
tegrating such solutions in RE processes. This work answers
RQA and RQB, addressing Gap 1, Gap 3 and Gap 4. This study
is currently under major revision in Transactions on Software
Engineering and Methodology (TOSEM).

L I S T O F P U B L I C AT I O N S

The complete list of publications is reported below. The articles whose title
is in boldface were discussed in this dissertation.

international journal papers

[J1] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Detecting privacy requirements from User Stories with
NLP transfer learning models.” In: Information and Software
Technology 146 (2022), p. 106853. issn: 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2022.106853.

[J2] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Automatic Identification of Privacy and Security Require-
ments: A Systematic Literature Review.” In: Under minor
revision in Requirement Engineering Journal (2025).

[J3] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Beyond Domain Dependency in Security Requirements
Identification.” In: Information and Software Technology, 182

(2025), p. 107702. issn: 0950-5849. doi: https://doi.org/10.
1016/j.infsof.2025.107702.

[J4] Francesco Casillo, Vincenzo Deufemia, Fabio Palomba, and
Carmine Gravino. “A First Eye on the Impact of Quantum
Natural Language Representations for Non-Functional Re-
quirements Classification.” In: Under major revision in Transac-
tions on Software Engineering and Methodology (TOSEM) (2025).

[J5] Gianmario Voria, Francesco Casillo, Carmine Gravino, Gemma
Catolino, and Fabio Palomba. “RECOVER: Toward the Auto-
matic Requirements Generation from Stakeholders’ Conver-
sations.” In: Under major revision in Transactions on Software
Engineering (2025).

13

https://doi.org/https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/https://doi.org/10.1016/j.infsof.2025.107702
https://doi.org/https://doi.org/10.1016/j.infsof.2025.107702

14 list of publications

international conference papers

[C1] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“PReDUS: A Privacy Requirements Detector From User Sto-
ries.” In: REFSQ Workshops. 2022.

[C2] Francesco Casillo, Antonio Mastropaolo, Gabriele Bavota, Vin-
cenzo Deufemia, and Carmine Gravino. “Towards Generating
the Rationale for Code Changes.” In: 33rd IEEE/ACM Interna-
tional Conference on Program Comprehension (ICPC 2025). ICSE
’25. Ottawa, Canada, 2025.

[C3] Carmine Ferrara, Francesco Casillo, Carmine Gravino, Andrea
De Lucia, and Fabio Palomba. “ReFAIR: Toward a Context-
Aware Recommender for Fairness Requirements Engineer-
ing.” In: Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering. ICSE ’24. Lisbon, Portugal: Asso-
ciation for Computing Machinery, 2024. isbn: 9798400702174.
doi: 10.1145/3597503.3639185.

https://doi.org/10.1145/3597503.3639185

2
B A C K G R O U N D

Understanding and addressing NFRs is essential for developing
robust, secure, and ethically responsible software systems. Unlike
functional requirements that specify the operations a system must
perform, NFRs define quality attributes that a system must satisfy,
such as performance, security, privacy, and fairness. As software
systems become more complex and pervasive, the need for effective
NFR management has become more pressing. This chapter provides
an exploration of the classification of NFRs and a focused discussion
on three types: privacy, security, and fairness. Additionally, it reviews
existing methodologies and frameworks that have been developed
to automate the identification of these NFRs, paving the way for a
better understanding of the research contributions of this thesis.

2.1 non-functional requirements classification

In recent years, numerous researchers have contributed to the classi-
fication of non-functional requirements (NFRs). Some studies have
focused on identifying a comprehensive set of NFR categories, while
others have developed automated methods to classify these require-
ments. This section provides an overview of the most significant
contributions in this field.

K. Rahman et al. [178] investigates the classification of NFRs into
categories such as security, usability, operability, maintainability, and
performance. The study introduces a hybrid deep learning framework
that combines LSTM (Long Short-Term Memory) and BiLSTM (Bidi-
rectional LSTM) models with Artificial Neural Networks (ANNs). It
uses Word2Vec for feature extraction and vectorization, enhancing
the ability of the models to learn contextual representations of words
in the NFR corpus. The research utilized a combined dataset of 914

NFRs from two publicly available sources (PROMISE_exp [59] and

15

16 background

PROMISE-NFR [46]) and conducted extensive preprocessing. The ex-
perimental results demonstrate that the hybrid models (LSTM-ANN
and BiLSTM-ANN) significantly outperform their counterparts. The
LSTM-ANN model achieved an F1-score ranging from 58% to 82%,
while the BiLSTM-ANN model attained F1-scores up to 88%. Overall,
the BiLSTM-ANN model showed performance with improvements
in precision, recall, and F1-scores compared to simple LSTM and
BiLSTM models, with micro-average F1-scores reaching 78%.

F. Khayashi et al. [101] focuses on distinguishing between Func-
tional Requirements (FRs) and NFRs. The NFRs analyzed include
general quality factors such as usability, reliability, security, and
performance. The study employs a variety of DL models: LSTM, BiL-
STM, GRU, BiGRU, and CNN. It also incorporates ensemble methods
through hard and soft voting mechanisms. For feature extraction,
the paper uses two word embedding techniques: one based on the
Keras library trained on the dataset itself and another using GloVe
embeddings trained on a large-scale external corpus. The prepro-
cessing steps involve text cleaning using the NLTK library, including
removing punctuation, converting text to lowercase, and eliminating
stop words. The dataset utilized is a processed version of the PURE
repository [88], comprising 4,661 requirements, with 2,617 labeled as
functional and 2,044 as non-functional. The models were evaluated
using metrics like precision, recall, and F1-score. Results showed
that the BiLSTM model had the highest performance among individ-
ual models, achieving an F1-score of 79% with Keras embeddings.
The ensemble methods improved results further, with hard voting
yielding the best overall performance, reaching an F1-score of 80%.

G. Li et al. [116] investigate the classification of both FRs and
NFRs, focusing specifically on NFR categories like usability, secu-
rity, operability, and performance. The proposed method, DBGAT
(Dependency-BERT Graph Attention Network), integrates BERT for
initial word embeddings to capture rich contextual information and
a Graph Attention Network (GAT) to incorporate syntactic and struc-
tural features of requirements sentences. The approach constructs
dependency parse trees, transforming them into graphs where nodes
represent words, and edges capture syntactic relationships. This
structure allows the model to learn deep semantic representations,

2.1 non-functional requirements classification 17

enhancing classification performance. The study uses the PROMISE
dataset [46], consisting of 625 requirement statements, split into 255

FRs and 370 NFRs, and the Concordia RE corpus, which contains
3,064 annotated sentences. The datasets cover various software re-
quirements, testing the model’s generalization and performance. The
DBGAT model achieves outstanding results, with an F1-score of up
to 91% for seen projects and 88% for unseen projects.

B. Li et al. [114] categorize NFRs such as performance, security,
usability, maintainability, and reliability, introducing a DL model
named NFRNet, which incorporates an improved BERT model using
N-gram masking for word embeddings and a Bi-LSTM network to
capture contextual information. The approach involves extensive
preprocessing of textual requirement descriptions, including nor-
malization, stop word removal, and lemmatization. The improved
BERT model enhances the representation of context by considering
both character-level and phrase-level dependencies using N-gram
masking. The Bi-LSTM network then synthesizes these embeddings
to classify NFRs. The model also employs multi-sample dropout for
regularization, which improves generalization and reduces training
iterations. The research uses an expanded dataset called SOFTWARE
NFR, derived from the original PROMISE dataset [46], increasing
from 370 to 6,222 requirement descriptions across 32 NFR categories.
The proposed NFRNet model achieves superior performance com-
pared to 17 benchmark models, with a Precision of 91%, a Recall
of 92%, and an F1-score of 91%, demonstrating significant improve-
ments in the automated classification of NFRs.

K.M. Ashikur Rahman et al [179] propose a comprehensive frame-
work that includes two models: DReqANN (Deep Requirement Arti-
ficial Neural Network) and DReqBiLSTM (Deep Requirement Bidi-
rectional Long Short-Term Memory). The methodology involves pre-
processing using Natural Language Toolkit (NLTK) for tasks like stop
word removal and lemmatization, followed by TF-IDF for feature
extraction and word embeddings for semantic understanding. The
models use multi-layer architectures with dropout regularization to
prevent overfitting and optimize performance. The study utilizes a
dataset of 914 NFR instances derived from the PROMISE_NFR [46]
and PROMISE_exp [59] datasets, categorized into five primary NFR

18 background

types. The DReqANN model achieved precision between 81% and
99.8%, recall between 74% and 89%, and an F1-score ranging from
83% to 89%, outperforming traditional approaches and demonstrat-
ing the efficacy of DL techniques for automated NFR classification.

M. Akter Metu et al. [144] address the classification of NFRs includ-
ing availability, security, usability, maintainability, and performance.
The research proposes a hybrid deep learning model combining
SVM with Bi-LSTM. The Bi-LSTM component captures contextual
and sequential dependencies in requirement sentences, while SVM
is employed for the output layer to handle high-dimensional data
and improve classification performance. The text preprocessing in-
volves tokenization, data cleaning, and normalization, and feature
extraction is achieved using word embeddings integrated into a
Keras embedding layer. The model was trained and evaluated on the
PROMISE_exp dataset [59], which includes 969 software requirement
sentences distributed over 12 requirement classes, covering functional
and non-functional requirements. The hybrid model achieved an ac-
curacy of 98%, outperforming several baseline models, including
traditional DL approaches. The results highlight the model’s robust-
ness and effectiveness, validated using 10-fold cross-validation.

2.2 privacy and security requirements identification

Interest in the identification of specific NFRs such as privacy and
security has become increasing in recent years. While researchers and
practitioners have provided solutions for the identification of such
NFRs in approaches that also include other types of NFRs, as we
have seen in the previous section, there have also been attempts to
identify NFRs considered individually, then methodologies designed
to specifically identify security, privacy, and so on. One of the con-
tributions of this thesis is a systematic review of the literature (SLR)
on automatic identification of security and privacy requirements [J2].
Below, the main findings from the study are summarized.

The field of security and privacy requirement identification has
seen extensive research, focusing primarily on ML-based techniques
to automate the identification of these requirements.

2.2 privacy and security requirements identification 19

Figure 2.1: Number of papers for the type of task and problem addressed.

Figure 2.1 illustrates that the most common approaches include
multi-class and binary classification, with multi-class classification
being the predominant approach in the literature. This method, used
by 20 studies, mainly targets security requirements across various
non-functional requirements (NFRs) [3, 4, 10, 39, 47, 79, 84, 91, 98,
102, 109, 115, 116, 123, 131, 181, 183, 200, 214, 217], while binary
classification, though less common, is primarily applied for specific
privacy or security requirements [71, 103, 106, 115, 118, 119, 150, 157,
194, 199, 225, 242].

In terms of techniques, SVM, TF-IDF, and Naive Bayes (NB) are
the most frequently utilized for classification tasks, appearing in over
a dozen studies [4, 62, 91, 102, 115, 123, 138, 150, 153, 199, 200, 210,
214, 237, 242]. Recently, DL models such as BERT and Word2Vec
have gained prominence, reflecting an increased focus on leveraging
advanced NLP methods for enhanced accuracy and attempts for
context-aware requirement extraction [39, 79, 114, 116, 131, 190, 217].

20 background

Figure 2.2: Employed document types.

The SLR investigate then the types of documents utilized, with
Figure 2.2 illustrating their distribution across the literature.

The analysis reveals that concise, single-sentence requirements are
the most frequently used document type, appearing in 28 studies,
with a predominant focus on security requirements [3, 4, 10, 39, 47,
79, 91, 98, 102, 103, 106, 109, 114, 116, 118, 131, 134, 150, 181, 183,
188, 194, 200, 214, 217, 225, 236, 237]. This reflects a preference for
straightforward requirement statements in the automated identifica-
tion process.

Other document types include USs, Reddit posts, contract docu-
ments and policies, which are mainly used for privacy requirements,
underscoring the role of formal guidelines or user perspectives in
addressing these concerns [29, 119, 137, 190]. Additionally, Use Cases
and vulnerabilities are frequently associated with security require-
ments, highlighting their relevance in capturing potential risks during
the requirements analysis phase [71, 83]. This variety demonstrates
the need to leverage multiple sources to build comprehensive models
for security and privacy requirement identification.

2.2 privacy and security requirements identification 21

An interesting aspect that emerged from the SLR is that there is
a lack of widely used datasets when it comes to identifying privacy
or privacy and security together. In fact, each work uses a different
dataset as well as a different type of requirement [29, 62, 114, 119, 134,
137, 138, 157, 188, 190, 210, 242]. The situation changes when it comes
to identifying security requirements, where the PROMISE dataset
[46] is used in several works [3, 4, 10, 39, 47, 79, 91, 98, 109, 116, 118,
131, 181, 183, 200, 214, 236, 237], becoming a baseline to be used to
compare with other approaches. Next, there is the SecReq dataset,
which includes requirements from 3 different projects (Common
Electronic Purse (ePurse), Customer Premises Network (CPN) and
the Global Platform Specification (GPS)) [103, 106, 118, 153, 194, 217]
and a dataset of about 40 use cases with non-functional requirements
related to an application called iTrust [71, 199, 200, 234].

In the end, investigating effective methods for identifying privacy
and security requirements, the chosen approaches vary significantly
based on the document types analyzed, such as one-sentence require-
ments, use cases, user reviews, and vulnerabilities.

For one-sentence requirements, the NFRNet model by Li et al. [114]
demonstrates outstanding performance in multiclass classification.
NFRNet combines a BERT word embedding layer with a BiLSTM
network to classify requirements into 32 NFRs categories, achieving
an impressive F1-score of 91.5%. Similarly, for security requirements,
Luo et al. [131] introduce PRCBERT, a prompt learning approach
based on BERT that yields a remarkable F1-score of 98% exploiting
PROMISE [46]. These results highlight the effectiveness of neural
network-based approaches in one-sentence requirement analysis.

When analyzing Use Cases, the best approaches focus on secu-
rity requirements. Gärtner et al. [71] propose a knowledge-based
approach leveraging security knowledge extraction, achieving 98%
accuracy on the iTrust dataset. Alternatively, Slankas et al. [199] apply
a combination of supervised learning models using Stanford Type
Dependency Representation and a voting system with K-Nearest
Neighbors (KNN), NB, and SVM, yielding an F1-score of 89%. De-
spite the effectiveness of both methods, their differing metrics com-
plicate direct comparison, indicating that knowledge-based and ML
approaches can both be effective depending on the evaluation criteria.

22 background

For user reviews, effective methods vary by task. In identifying
both security and privacy requirements, Nguyen et al. [157] employ
SMOTE, Bag-of-Words, and SVM, achieving an AUC of 93%. For
security-focused review summarization, Tao et al. [210] achieve an
F1-score of 89% using TF-IDF and SRR-Miner. Privacy concerns from
user reviews are effectively extracted by Ebrahimi et al. [62], using a
combination of TF-IDF, GloVe embeddings, and LDA with a precision
of 75%. Different metrics again preclude a single “best” approach,
but hybrid and embedding-based techniques demonstrate strong
results for both security and privacy concerns in user reviews.

The task of identifying security requirements in the context of
vulnerabilities is challenging. Imtiaz et al. [83] use Soft Ensemble
methods achieving modest precision and recall scores (13.6% and
64.1%, respectively). Another study by Imtiaz et al. [84] applies VSM
and LSI, yielding varying precision and recall, with lower scores
overall. The relatively low performance suggests that vulnerabil-
ity detection from documents may require more robust or novel
approaches to improve accuracy.

In summary, document type greatly influences method efficacy.
Multiclass classification methods, such as NFRNet and PRCBERT,
excel in one-sentence requirements. For complex documents like
user reviews and Use Cases, tailored approaches using hybrid and
ensemble techniques perform well. However, vulnerability identifi-
cation remains challenging, underscoring the need for specialized
methodologies in that domain.

2.3 fairness as non-functional requirement

Fairness as a NFR is a rapidly evolving area of study, gaining interest
as ML systems are increasingly deployed in sensitive, real-world
contexts. Fairness in these systems typically relates to preventing
discrimination against specific groups or individuals.

Fairness definitions are diverse, each tailored to specific ethical or
regulatory needs. Verma and Rubin [222] categorize fairness defini-
tions into three groups: (1) statistical fairness, ensuring consistent
predictions across sensitive groups, such as “Statistical Parity”; (2)

2.3 fairness as non-functional requirement 23

individual fairness, maintaining fairness among individuals through
approaches like “Fairness through Unawareness”; and (3) causal
fairness, focusing on causal relationships, such as “Counterfactual
Fairness”.

Similarly, Mehrabi et al. [141] define fairness in terms of group-
based and individual-based reasoning, introducing concepts like
“Equalized Odds” for group fairness and “Fairness through Aware-
ness” for individual considerations.

Bias mitigation strategies can be based on data preprocessing, aim-
ing to modify training data to align with fairness principles. Biswas
and Rajan [17] evaluated 37 different preprocessing pipelines across
datasets, demonstrating that data transformations can positively im-
pact fairness. Nargesian et al. [155] proposed data augmentation
techniques to enhance fairness, while Moumoulidou et al. [152]
explored data diversity under fairness constraints, showing that bal-
anced representation across groups can mitigate model bias. Another
notable approach, namely “Fair-SMOTE”, developed by Chakraborty
et al. [36], balances training data by oversampling underrepresented
sensitive groups, improving fairness in model outcomes.

Beyond data preprocessing, some studies address fairness through
ML model optimization, often seeking trade-offs between fairness
and accuracy. Hort et al. [81] introduced “Fairea”, a mutation-based
approach that benchmarks bias mitigation techniques based on
fairness-accuracy trade-offs. Similarly, Chen et al. [42] proposed
“MAAT”, an ensemble learning approach that improves fairness with-
out sacrificing performance. Galhotra et al. [70] developed “Themis”,
a test generation tool that highlights and addresses data-driven un-
fairness through resampling strategies aligned with fairness metrics.

Despite advancements in fairness-aware data preprocessing and
model tuning, fairness as an NFR remains under-explored in require-
ments engineering. Recognizing this gap, Soremekun et al. [205]
emphasize the importance of considering fairness early in the re-
quirements specification phase, highlighting the lack of standardized
frameworks for integrating ethics into requirements engineering
[15]. This lack of standards makes it challenging to address fairness
definitions within a single requirements specification, as each fair-

24 background

ness notion might require distinct considerations depending on the
application domain and ML task [26].

Context sensitivity further complicates fairness requirements in
ML, as ethical concerns can vary greatly depending on the domain
and the specific functionalities required. Previous work [35, 69] under-
scores the difficulty of optimizing fairness across different application
domains, as each context may necessitate a unique fairness approach.
For instance, fairness requirements in healthcare might vastly differ
from those in finance or criminal justice, making it difficult to adopt
a one-size-fits-all strategy.

In a broader perspective, AI researches provide preliminary tools,
such as ethical content analyzers for social media posts [82], offering
analytics on ethical considerations in textual data [27, 37, 80, 125].

Although these methods provide valuable solutions, they over-
look the potential impact of early-stage requirements engineering.
Soremekun et al. [205] argue that making practitioners aware of
sensitive features during requirements elicitation could significantly
influence the entire ML lifecycle. Early recommendations on sensitive
features could guide subsequent stages of development, from data
collection to model training, enabling stakeholders to adopt more
fairness-aware practices throughout the ML pipeline.

PA RT II

P U R G AT O R I O

“Per correr miglior acque alza le vele
omai la navicella del mio ingegno,

che lascia dietro a sé mar sì crudele;

e canterò di quel secondo regno
dove l’umano spirito si purga

e di salire al ciel diventa degno.

Ma qui la morta poesì resurga,
o sante Muse, poi che vostro sono;

e qui Calïopè alquanto surga,

seguitando il mio canto con quel suono
di cui le Piche misere sentiro

lo colpo tal, che disperar perdono.”

Dante Alighieri, Purgatorio, Canto I, vv. 1 - 12.

3
D E T E C T I N G P R I VA C Y R E Q U I R E M E N T S F R O M
U S E R S T O R I E S W I T H N L P T R A N S F E R L E A R N I N G
M O D E L S

3.1 introduction

RE, focusing on the documentation and management of system re-
quirements, remains a complex activity where misunderstandings
can lead to costly design flaws and system failures [172, 203]. This
complexity is accentuated in Agile methodologies, where require-
ments are expressed in natural language through User Stories (USs)
that improve collaboration and flexibility. Despite the advantages of
Agile approaches, identifying NFRs, such as privacy requirements,
remains a challenging task, often due to the limited expertise of
stakeholders and the informal nature of the requirements [66].

USs follow a structured format characterized by the who, the what,
and the why of a requirement, becoming a de facto standard for re-
quirement specification [129]. For example, a typical US might read:
“As a site member, I want to access the Facebook profiles of other members so
that I can share my experiences with them.” [50]. This format introduces
challenges in ensuring that important NFRs such as privacy and se-
curity are explicitly addressed and well-defined. Several frameworks
and methodologies have been proposed for analyzing the syntactic
structure of USs to improve their clarity and accuracy [77, 90, 127],
while others focus on transforming USs into models and artifacts
for subsequent software development stages [63, 95, 130]. Yet, little
attention has been paid to systematically addressing NFRs such as
privacy within USs during the early phases of Agile development.

In the context of privacy requirements, many efforts have been
devoted to privacy disclosure, focusing on facilitating the work of
analysts and developers [11, 55] and developing linguistic taxonomies
for privacy content analysis [73, 219]. Existing approaches often
aim to automatically recognize sensitive personal information in

27

28 detecting privacy requirements from user stories

unstructured text [140, 196, 235], enabling tools such as TABOO [156]
and PrivacyBot [212]. However, these efforts primarily target later
stages of the software development lifecycle or focus on functional
privacy requirements, leaving a significant gap in addressing privacy
concerns within the informal and early-stage context of USs.

To address this gap, this thesis proposes a novel approach for
detecting privacy requirements from USs by leveraging Transfer
Learning (TL) and NLP techniques. TL enables the adaptation of
pre-trained deep learning models to new tasks with minimal addi-
tional training, providing a resource-efficient solution for address-
ing domain-specific challenges [107, 213]. Specifically, the proposed
method employs a pre-trained Convolutional Neural Network (CNN)
designed for privacy-related text classification [140], enhanced with
features derived from a privacy dictionary to capture semantic and
using peculiar NLP techniques for syntactic nuances in USs. This
combination facilitates the accurate identification of privacy-related
elements within Agile requirements specifications.

Through the development and evaluation of this approach, this
chapter contributes to the field by providing:

1. A systematic method for detecting privacy requirements from
USs using state-of-the-art NLP and TL techniques.

2. Empirical validation of the method on a real-world dataset of
1,680 USs [53], demonstrating its effectiveness in comparison
with traditional and deep learning methods.

3. Insights into the role of privacy-specific features in improving
classification performance, addressing a critical gap in early-
stage privacy requirements engineering.

3.2 methodology

This section describes the methodology designed for detecting privacy-
related disclosures in Agile USs. The approach combines linguistic
resources, NLP techniques, and deep learning architectures to iden-
tify privacy-related elements in USs effectively.

3.2 methodology 29

3.2.1 User Stories as Input

USs are short, structured natural language requirements used in
Agile development. A typical US follows the structure:

As a [role], I want to [feature], so that [reason].

Despite this structured format, identifying privacy disclosures can
be challenging due to the variability in terminology and contex-
tual usage of words. To address these issues, the proposed method
integrates advanced linguistic and ML techniques.

3.2.2 Lexicon-Based Privacy Features

The first step involves extracting privacy-related features using a
privacy dictionary developed by Vasalou et al. [219]. This dictio-
nary categorizes words and phrases into different privacy-related
categories, such as OpenVisible, allowing the identification of privacy-
sensitive language within USs. Figure 3.1 shows an example US
with privacy-related words highlighted, while Table 3.1 describes the
corresponding privacy category.

As a site member, I want to access to the Facebook profiles of other members

so that I can share my experiences with them.

Figure 3.1: Example US with words related to the OpenVisible privacy cate-
gory highlighted.

Table 3.1: Privacy category of “access” and “share” [219].

Category Name Description Example Words

OpenVisible Open and public access to people port, display, accessible

30 detecting privacy requirements from user stories

3.2.3 NLP-Based Features

In addition to lexicon-based features, linguistic features are extracted
using the spaCy NLP toolkit1. These features include parts of speech
(POS), syntactic dependencies, and named entities, which help to
capture the contextual and structural characteristics of the text. For
instance, Table 3.2 shows the POS and dependency information
extracted from the US in Figure 3.1.

Table 3.2: Parts-of-speech and dependencies extracted from an example US.

Text Part of Speech (POS) Dependency

As SCONJ prep

a DET det

site NOUN compound

member NOUN pobj

I PRON nsubj

want VERB ROOT

to PART aux

access VERB xcomp

to ADP prep

the DET det

Facebook PROPN compound

profiles NOUN pobj

of ADP prep

other ADJ amod

members NOUN pobj

so SCONJ mark

that SCONJ mark

I PRON nsubj

can VERB aux

share VERB advcl

my DET poss

experiences NOUN dobj

with ADP prep

them PRON pobj

1 https://spacy.io/

https://spacy.io/

3.2 methodology 31

3.2.4 Deep Neural Network Architectures

Two deep learning models are developed to classify USs into privacy-
related or non-privacy-related categories:

CNN for NLP-Based Features (CNNNLP): This model processes
the linguistic features described in Section 3.2.3. Its architecture,
shown in Figure 3.2, integrates lexical, syntactic, and semantic fea-
tures to capture privacy-related patterns in text.

CNN for Lexicon-Based Features (CNNPW): This model uses fea-
tures derived from the privacy dictionary (Section 3.2.2). Figure 3.3
illustrates its architecture, which combines feature embeddings from
privacy categories.

Figure 3.2: The CNNNLP architecture.

Figure 3.3: The CNNPW architecture.

32 detecting privacy requirements from user stories

3.2.5 Transfer Learning for Privacy Disclosure Detection

To address the scarcity of labeled US datasets, a TL approach is
employed. A pre-trained CNN originally developed for detecting
private disclosures in Reddit posts [140] is adapted for the privacy
detection task. The pre-trained network processes NLP-based features
and is fine-tuned using a small labeled dataset of USs. Figure 3.4
shows the architecture of the TL model, PDTL, which combines
outputs from the pre-trained network with features from the privacy
dictionary. This integration enhances the model’s ability to capture
both linguistic and lexicon-based privacy properties in USs.

Figure 3.4: The PDTL architecture leveraging transfer learning.

3.3 empirical study design 33

3.3 empirical study design

In this section, we outline the design of the empirical study con-
ducted as part of this work. Specifically, we begin by presenting the
research questions along with the rationale behind their formula-
tion. Subsequently, we describe the dataset utilized in the analysis,
followed by an explanation of the validation methods employed.

The latter part of this section details the evaluation criteria adopted
for assessing the predictions made by the ML models. The datasets
and scripts used for training the models and reproducing the results
are publicly available at https://tinyurl.com/US-privacy.

3.3.1 Research Questions

This study aims to evaluate advanced methods and technologies for
detecting privacy content from USs. As outlined in the introduction,
we first perform a preliminary validation to determine:

a) Whether a deep learning method (CNNNLP) achieves compa-
rable performance to conventional shallow machine learning
methods when utilizing NLP-based features.

b) Whether a deep learning method (CNNPW) achieves compara-
ble performance to shallow machine learning methods when
using privacy word (PW) features.

Considering that US datasets containing sensitive information are
challenging to obtain, we explore TL for privacy disclosure detection,
as detailed in Section 3.2.5. TL enables the application of a neural
network trained for one task in a given domain to another related
task or domain, leveraging shared knowledge. To guide this study,
we formulate three research questions:

RQPri1 Does CNNNLP perform as effectively as conventional machine
learning methods in detecting privacy content when using
NLP-based features?

https://tinyurl.com/US-privacy

34 detecting privacy requirements from user stories

RQPri2 Does CNNPW perform as effectively as conventional machine
learning methods in detecting privacy content when using PW
features?

RQPri3 Does PDTL, based on transfer learning, yield better predictions
than CNNNLP and CNNPW?

To address RQPri1, we trained a CNNNLP using features extracted
through NLP techniques. This method predicts whether USs con-
tain privacy-related information or not. CNNs are chosen due to
their ability to identify complex patterns even with limited training
data. Their effectiveness has been demonstrated in various domains,
including natural language processing [132].

For conventional ML methods, we utilized Logistic Regression
(LR), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB),
k-Nearest Neighbors (KNN), Random Forest (RF), and Decision
Tree (DT). When these methods use NLP-based features for training,
they are referred to as LRNLP, SVMNLP, GNBNLP, kNNNLP, RFNLP,
and DTNLP. The choice of such ML algorithm is deliberate, as these
methods are commonly used in software engineering tasks and are
well-suited for binary classification problems.

Similarly, RQPri2 investigates the performance of models trained
with PW features. In this case, the models are denoted as CNNPW ,
LRPW , SVMPW , GNBPW , kNNPW , RFPW , and DTPW .

To address RQPri3, we leverage a TL approach through a CNN
model referred to as PDTL (detailed in Section 3.2.5). The expectation
is that PDTL will outperform CNNNLP and CNNPW since it combines
semantic, syntactic, and keyword-based features to enhance predic-
tion accuracy. In summary, CNNNLP, trained on a limited dataset
containing privacy-related information, does not exploit PW features,
while CNNPW operates on a narrower set of features compared to
PDTL. By combining these complementary approaches, we aim to im-
prove the detection of privacy-related content in USs, demonstrating
the potential of TL for such tasks.

3.3 empirical study design 35

3.3.2 Data Collection

To train the proposed model for detecting privacy disclosures in
USs, it is necessary to use a dataset consisting of USs enriched with
labels indicating whether a given US contains privacy disclosures
and features that contribute to identifying privacy-related content.
Unfortunately, such datasets were not readily available in the liter-
ature or online repositories. Consequently, we created a dedicated
dataset by identifying and collecting USs, extracting the required
features to enable reliable model predictions. To achieve this, we
conducted an extensive search to gather a substantial number of USs
and identified 22 publicly available datasets, each containing more
than 50 USs [53]. The details of the methodology employed to create
these datasets are thoroughly documented in [54].

We extracted features from each US in these datasets, such as
entities, dependencies, parts of speech, and privacy-related categories
and terms. These features serve as independent variables for training
the proposed model. In the following, an example is given.
User Story: As a data user, I want to have 2017 deletions processed.
Entities: [’As’, ’a’, ’data’, ’user’, ’PERSON’, ’want’, ’to’, ’have’, ’2017’,
’deletions’, ’processed’].
Dependencies: [’prep’, ’det’, ’compound’, ’pobj’, ’nsubj’, ’ROOT’,
’aux’, ’xcomp’, ’nummod’, ’dobj’, ’acl’].
Part of speech: [’SCONJ’, ’DET’, ’PROPN’, ’NOUN’, ’PRON’, ’VERB’,
’PART’, ’AUX’, ’NUM’, ’NOUN’, ’VERB’].
Privacy categories and number of words: [[’PrivateSecret’, 1]].
Privacy words: [’data’].

Table 3.3 provides an overview of the datasets considered in this
study. Each row in the table includes a brief description of the project,
the number of USs it contains, the number of privacy terms in those
USs, and statistics about the features derived from NLP techniques.
Specifically, we processed each US to extract relevant features for
model training. The last four columns show the percentage of USs
containing: both Privacy Words and Disclosures (PW&Di), only Pri-
vacy Words (PW), only Disclosures (Di), and neither (None). The first
author manually classified the privacy content, and the other authors
cross-checked the results.

36 detecting privacy requirements from user stories

Table 3.3: Properties of the datasets used for the research.

Description Size
Privacy
Terms

%PW&Di %PW %Di %None

1 Online platform for delivering transparent
information on US governmental spending

98 118 0.224 0.194 0.388 0.194

2 Electronic land management system for the
Loudoun County, Virginia

58 107 0.328 0.000 0.638 0.340

3 An online platform to support waste recy-
cling

51 86 0.176 0.137 0.137 0.549

4 Website for create a transparent overview of
governmental expenses

53 85 0.566 0.151 0.170 0.113

5 Platform for obtaining insights from data 66 69 0.742 0.091 0.106 0.061

6 First version of the Scrum Alliance Website 97 115 0.175 0.031 0.670 0.124

7 New version of the NSF website: redesign
and content discovery

73 115 0.041 0.000 0.740 0.219

8 App for camp administrators and parents 55 56 0.273 0.182 0.164 0.382

9 First version of the PlanningPoker.com web-
site

53 53 0.170 0.057 0.623 0.151

10 Platform to find, share and publish data on-
line

67 63 0.552 0.134 0.104 0.209

11 Management information system for Duke
University

68 132 0.206 0.191 0.206 0.397

12 Simplified toolbox to enable fast and easy
development with Hadoop

64 67 0.109 0.219 0.219 0.453

13 Research data management portal for
the university of Oxford, Reading and
Southampton

102 119 0.186 0.186 0.245 0.382

14 Personal interactive assistant for indepen-
dent living and active aging

138 126 0.036 0.065 0.413 0.486

15 Conference registration and management
platform

69 106 0.116 0.430 0.739 0.101

16 Software for machine-actionable data man-
agement plans

83 115 0.578 0.181 0.229 0.012

17 Web-based archiving information system 57 72 0.123 0.07 0.211 0.592

18 Institutional data repository for the Univer-
sity of Bath

53 89 0.660 0.038 0.226 0.075

19 Repository for different types of digital con-
tent

100 88 0.050 0.120 0.220 0.610

20 Software for archivists 100 117 0.250 0.130 0.430 0.190

21 Digital content management system for Cor-
nell University

115 173 0.252 0.157 0.391 0.200

22 Citizen science platform that allows anyone
to help in research tasks

60 82 0.050 0.067 0.400 0.483

Figure 3.5 presents a breakdown of the dataset, showing the pro-
portions of USs that fall into each category: containing both Privacy
Words and Disclosures, only Privacy Words, only Disclosures, or nei-

3.3 empirical study design 37

Figure 3.5: Partitions of the dataset for each type of US.

ther. Special attention was given to categories with fewer instances,
as insufficient representation could compromise the model’s ability
to accurately differentiate between them.

The independent variables for this study include features derived
from NLP techniques—entities, dependencies, parts of speech, pri-
vacy words, and privacy categories. Accuracy and F1-score were
selected as the dependent variables to evaluate the model’s perfor-
mance, as explained in the subsequent section.

3.3.3 Evaluation Criteria

To assess the performance of the proposed models in identifying
privacy disclosures, we utilized four widely adopted evaluation
metrics for classification tasks [173]: Accuracy, Precision, Recall, and
F1-score. Each metric provides a different perspective on the model’s
performance:
Accuracy: this metric represents the ratio of correctly predicted ob-
servations (true positive + true negative) to the total number of ob-
servations. It is one of the most intuitive performance measures for
classification models.

38 detecting privacy requirements from user stories

Precision: defined as true positive / (true positive + false positive),
precision measures the correctness of the responses provided by the
model, highlighting its ability to avoid false positives.
Recall: this metric, calculated as true positive / (true positive + false neg-
ative), evaluates the model’s ability to identify all relevant instances,
focusing on completeness.
F1-score: as the harmonic mean of precision and recall, the F1-score
provides a balance between these two metrics. It is particularly useful
when a trade-off between precision and recall is important.

These metrics were chosen because they are well-suited for binary
classification tasks, where accuracy, precision, and recall are equally
important. Moreover, these metrics allowed for direct comparisons
between the models implemented in this study and pre-trained
models evaluated using the same criteria.

The objective was to analyze how precisely the models identified
privacy aspects while understanding their limitations in extracting
such information from the test dataset.

Additionally, we evaluated whether the predictions made by the
models originated from the same population, ensuring that the ob-
served differences were not due to chance. To this end, we em-
ployed the McNemar test, a non-parametric statistical test commonly
used for comparing the performance of two models [89, 192]. Non-
parametric methods like McNemar’s test are preferred in machine
learning and deep learning comparisons as they make fewer assump-
tions about the data.

McNemar Test: Given the predictions of two models (Model A
and Model B) and the true labels, a contingency table is constructed
to record:

1. Cases where both models were correct,

2. Cases where both models were incorrect,

3. Cases where Model A was correct, but Model B was incorrect,

4. Cases where Model B was correct, but Model A was incorrect.

This contingency table is then used to estimate the probability that
Model A performs better than Model B as observed in the experiment.

3.3 empirical study design 39

The null hypothesis (Hn0) states that both models are equally accurate
in identifying privacy aspects.

Hn0: All models are equally accurate in identifying privacy aspect.

For each comparison, a p-value of 0.05 was set as the significance
threshold. If the p-value was below this threshold, the null hypothesis
was rejected, indicating that the observed differences were unlikely
due to chance. In such cases, it was determined whether one model
significantly outperformed the other.

This rigorous evaluation approach ensured the robustness of the
proposed models and provided meaningful comparisons to highlight
their effectiveness in detecting privacy-related content.

3.3.4 Validation Method

To evaluate the accuracy and effectiveness of the proposed ML mod-
els, it is crucial to assess their performance not only on the training
data but also on unseen datasets to understand their generalization
capabilities. This is because residual evaluation, which measures
errors on the training data, only indicates how well the model per-
forms on familiar data. However, such an evaluation does not provide
insight into the model’s ability to generalize to new, unseen data,
which is often a critical requirement in real-world scenarios.

To address this limitation, we adopted a k-fold cross-validation, a
widely used technique to assess the model generalizability. The
original dataset is partitioned into k subsets (or folds), and the model
is trained and validated k times, each time using a different fold as
the validation set and the remaining k − 1 folds as the training set.
For our study, we set k = 5, thereby dividing the dataset into five
equal parts. Furthermore, to ensure the robustness of our evaluation,
the 5-fold cross-validation process was repeated 40 times.

The dataset used for training and validation was categorized based
on the assumption that determines whether a user story (US) is
related to privacy content. Figure 3.5 provides a breakdown of the
cardinality of US instances for each type. Using these partitions,
the training sets consisted of 664 instances, while the test sets were
composed of 166 instances.

40 detecting privacy requirements from user stories

Specifically, 50% of the training set consisted of USs containing both
privacy words and disclosures (thus, privacy-related requirement),
with the remaining 50% distributed among the other three types
of USs. For the test sets, half of the instances (83) comprised USs
containing both disclosures and privacy words, while the remaining
are labeled as non-privacy related.

This validation methodology ensures that the models are rigor-
ously evaluated on multiple data splits, providing a reliable estimate
of their predictive performance on unseen data. By leveraging 5-fold
cross-validation repeated multiple times, we mitigate the potential bi-
ases and variability that might arise from using a single split, thereby
ensuring the robustness and reliability of our findings.

3.4 analysis of the results

This section presents and discusses the findings of the empirical
study for each research question.

3.4.1 Is CNNNLP accurate at least as conventional machine learning
methods to detect privacy content when using NLP-based features?

To address this research question, we evaluated whether a deep
learning method (CNNNLP) leveraging NLP-based features performs
comparably or better than conventional (shallow) machine learning
methods. This represents our first sanity check.

As described in Section 3.3.2, the models were trained and tested
with equal proportions of positive and negative samples. Specifically,
positive samples correspond to USs containing both Disclosures
and Privacy Words. For each fold, 332 positive and 332 negative
samples were selected for training, while 83 positive and 83 negative
samples were used for testing. Each fold was employed to train
and evaluate CNNNLP alongside traditional ML models, including
LRNLP, SVMNLP, GNBNLP, kNNNLP, RFCNLP, and DTNLP.

The aggregated results in terms of Accuracy and F1-score are
presented in Table 3.4, while Figures 3.6 and 3.7 provide a graphical
representation of the results across all runs.

3.4 analysis of the results 41

From Table 3.4, it is evident that CNNNLP outperformed the con-
ventional ML methods, achieving both Accuracy and F1-score values
greater than 0.7. In contrast, the other methods had values below 0.7.
The poorest performance was observed with SVMNLP.

Figure 3.6 illustrates the accuracy trends across all runs, highlight-
ing that CNNNLP consistently achieved superior Accuracy values
except for four cases. The variations in Accuracy for CNNNLP and
other models remained within 10%, with a few exceptions showing
a variation of around 20%. Figure 3.7 reveals that LRNLP, kNNNLP,
DTNLP, and RFCNLP exhibited regular F1-score trends, with vari-
ations within 10%. Conversely, CNNNLP, GNBNLP, and SVMNLP

showed some runs with variations of around 20%, although CNNNLP

remained superior in most cases.

Table 3.4: Results achieved with each model to answer RQPri1 in terms of
accuracy and F1-score.

Model Accuracy F1-Score

CNNNLP 0.720 0.713

LRNLP 0.617 0.605

SVMNLP 0.519 0.084

GNBNLP 0.510 0.612

kNNNLP 0.557 0.519

RFCNLP 0.662 0.669

DTNLP 0.609 0.611

To verify whether the observed performance differences were sta-
tistically significant, we applied the McNemar test with the null hy-
pothesis: “there are no differences in the accuracy of the models being
compared.”. The predictions from CNNNLP were compared against
those from each shallow machine learning model (LR, SVM, GNB,
kNN, RFC, and DT). For all comparisons, the p-value was <0.001,
allowing rejection of the null hypothesis. These results demonstrate
significant differences in accuracy between CNNNLP and the shallow
ML methods.

42 detecting privacy requirements from user stories

Figure 3.6: Accuracy values for all runs (RQPri1).

Figure 3.7: F1-score values for all runs (RQPri1).

In conclusion, the additional effort required to implement CNN is
justified by the significant improvement in prediction accuracy.

ø Thus, we can positively answer our first research question: a
deep learning method (CNNNLP) provides better predictions than
conventional (shallow) machine learning methods.

3.4 analysis of the results 43

3.4.2 Is CNNPW accurate at least as conventional machine learning meth-
ods to detect privacy content when using PW features?

To answer this research question, we evaluated whether CNNPW (a
deep learning model leveraging privacy word features) could achieve
comparable or better performance than conventional ML methods.

The results of the evaluation, presented in Table 3.5, show that
CNNPW achieves strong performance in terms of Accuracy and F1-
score, with values of 0.805 and 0.823, respectively. However, CNNPW
is outperformed by three conventional ML models: SVMPW , kNNPW ,
and RFPW , which achieve Accuracy values of 0.828, 0.810, and 0.829,
and F1-scores of 0.848, 0.825, and 0.851, respectively. Nevertheless,
CNNPW performs better than LRPW , DTPW , and GNBPW in both.

Table 3.5: Results achieved with each model to answer RQPri2, in terms of
accuracy and F1-score.

Model Accuracy F1-Score

CNNPW 0.805 0.823

LRPW 0.801 0.819

SVMPW 0.828 0.848

GNBPW 0.584 0.343

kNNPW 0.810 0.825

RFPW 0.829 0.851

DTPW 0.805 0.819

Figures 3.8 and 3.9 depict the accuracy and F1-score across all
runs. These plots highlight that CNNPW has consistent performance,
although it falls short when compared to ML models listed above.

To determine whether these performance differences are statisti-
cally significant, we conducted the McNemar test. Specifically, we
compared CNNPW with each of the conventional machine learning
models (LRPW , SVMPW , GNBPW , kNNPW , RFPW , and DTPW). For all
comparisons, the McNemar test yielded a p-value <0.001, allowing
rejection of the null hypothesis.

44 detecting privacy requirements from user stories

Figure 3.8: Accuracy values of all the runs (to answer RQPri2).

Figure 3.9: F1-score values of all the runs (to answer RQPri2).

These results confirm that there are statistically significant differ-
ences in performance between CNNPW and the other models.

Thus, CNNPW performs better than three conventional machine
learning models (LRPW , DTPW , and GNBPW) but worse than the
other three (SVMPW , kNNPW , and RFPW) when using PW features.

3.4 analysis of the results 45

Table 3.6: Results achieved with each model to answer RQPri3, in terms of
accuracy and F1-score.

Model Accuracy F1-Score

CNNNLP 0.720 0.713

CNNPW 0.805 0.823

PDTL 0.937 0.937

ø Therefore, we cannot positively answer our second research ques-
tion, as the deep learning method CNNPW is not as accurate as all
the considered conventional machine learning methods when using
PW features.

Interestingly, this result aligns with findings from previous studies
(e.g., [161]) that demonstrate how deep learning models can some-
times underperform in scenarios with limited training data. This
underscores the motivation of employing Transfer Learning.

For completeness, it is worth noting that shallow ML models
trained with PW features generally outperformed their counterparts
trained with NLP-based features (see Tables 3.4 and 3.5). The Mc-
Nemar test further revealed that these differences are statistically
significant, indicating that conventional methods benefit from train-
ing with a smaller, well-defined feature set.

3.4.3 Are predictions obtained with PDTL better than those achieved with
CNNNLP and CNNPW?

The goal of this research question is to evaluate the effectiveness of
applying PDTL for detecting privacy content in USs, in comparison
to the deep learning models CNNNLP and CNNPW .

Table 3.6 presents the results achieved by PDTL, CNNNLP, and
CNNPW in terms of Accuracy and F1-score. PDTL outperforms both
CNNNLP and CNNPW significantly, achieving values greater than
0.93 for both metrics. This represents an improvement of more than
10% over the best results achieved by CNNPW .

46 detecting privacy requirements from user stories

Figures 3.10 and 3.11 graphically depict these results, illustrating
the consistent superior performance of PDTL across all runs and
demonstrating that PDTL achieves higher prediction consistency
compared to the other models. The accuracy and F1-score values for
PDTL exhibit less variation across different runs, while both CNNNLP

and CNNPW show higher variability in their predictions.

Figure 3.10: Accuracy values of all the runs (to answer RQPri3).

Figure 3.11: F1-score values of all the runs (to answer RQPri3).

3.5 findings for researchers and practitioners 47

Comparing PDTL and the other models (CNNNLP and CNNPW) by
the mean of McNemar test, the former yielded a p-value < 0.001 in all
the cases, allowing us to reject the null hypothesis that the differences
are due to chance. Based on these findings, we can conclude that
Transfer Learning not only improves prediction accuracy and F1-
score but also ensures more stable and consistent performance across
different runs. This demonstrates the feasibility and effectiveness of
Transfer Learning for privacy content detection in USs.

ø Thus, we can positively answer our third research question: pre-
dictions obtained with PDTL are better than those achieved with
CNNNLP and CNNPW .

3.5 findings for researchers and practitioners

The analysis conducted to address our research questions provides
significant insights and implications for both researchers and practi-
tioners regarding the applicability and relevance of our findings. We
structure the discussion based on the major contributions achieved.

On the use of a tool to predict privacy content. We have intro-
duced an approach and a tool designed to automatically predict
privacy content from user stories—a problem that has not been
addressed previously. This approach combines NLP and Transfer
Learning strategies, offering a novel and effective way to address pri-
vacy content detection. This contribution should motivate researchers
and practitioners in the field of software engineering to explore the
potential benefits of automating privacy detection processes.
¬ Implication 1. Practitioners are now equipped with a method and tool
that significantly reduce the effort and cost associated with identifying
privacy requirements during the early design phase. Further user studies
should involve practitioners to validate and promote the suggested approach
and tool in real-world scenarios.

On the use of deep learning methods. As anticipated, the ex-
perimental results demonstrate that employing NLP-based CNNs
enhances the accuracy of privacy requirement predictions compared
to conventional (shallow) ML techniques. However, the findings high-
light the critical importance of the strategies used to train the models.

48 detecting privacy requirements from user stories

For example, the RQPri2 analysis did not reveal a consistent advan-
tage of deep learning methods over shallow ML methods, aligning
with findings in other studies [161].
¬ Implication 2. Researchers should prioritize empirical studies across
diverse datasets to identify effective strategies for training NLP-based pre-
diction models for privacy requirement detection in agile contexts.

On the use of privacy words. Our analysis highlighted the role of
privacy words in enhancing the performance of the ML methods em-
ployed. The results from RQPri2 (compared to RQPri1) demonstrated
a significant improvement when privacy words were used.
¬ Implication 3. The research community should explore the influence
of domain-specific data on the effectiveness of simpler and cost-effective
methods compared to more sophisticated but resource-intensive techniques.

On the use of Transfer Learning. The most notable outcome of
our analysis is the application of Transfer Learning, which improved
the performance of the built NLP-based CNN prediction models by
approximately 10% in terms of Accuracy and F1-score (as shown in
RQPri3 results). This further validates the advantages of this emergent
strategy, which facilitates the reuse of systems developed for one task
to build models for different yet related tasks [107, 108, 213].
¬ Implication 4. Researchers can leverage Transfer Learning to train NLP-
based prediction models, not only for privacy detection but also for security
requirements in agile development contexts.

3.6 threats to validity

This section outlines the main threats to validity associated with the
study, discusses their potential effects, and describes the measures
taken to mitigate them.

Construct Validity: This pertains to ensuring that the measurement
methods accurately correspond to the constructs being evaluated.
In this study, Scikit-learn library methods were used to evaluate
performance metrics, specifically the f1_score2 for F1-score and the

2 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_

score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

3.6 threats to validity 49

accuracy_score3 for Accuracy. These metrics were selected due to
their established usage in prior studies on privacy disclosure detec-
tion, allowing for meaningful comparisons with previous findings.
While reliance on a single library may pose a threat to construct
validity, the choice of Scikit-learn was necessary to ensure compatibil-
ity between traditional machine learning models and deep learning
methods implemented in Keras.

Another important threat to construct validity in this study is re-
lated to the labeling of NFRs in the datasets used for training and
evaluation. When using NLP models to classify text, it is assumed
that the ground truth labels (e.g., Privacy, Security, Fairness) are cor-
rectly assigned. However, human annotation is inherently prone to
error. For instance, in this study, a requirement tagged as privacy may
have been incorrectly classified due to ambiguous wording, or be-
cause annotators applied different interpretations. Additionally, some
words that appear privacy-related may not actually refer to privacy
in the given context, leading to potential noise in the dataset. Perhaps,
there remains a residual risk that some USs were misclassified. This
could impact performance metrics such as accuracy, precision, and
recall, so future work could further validate the dataset to enhance
the robustness of privacy classification.

Internal Validity: Internal validity concerns the control of extra-
neous variables and external factors that may influence the study’s
results. In this work, exploring the applicability of transfer learn-
ing for detecting privacy aspects, it was assumed that the models
employed were compatible as they were developed using the same
technology (i.e., Keras). Future studies could investigate the inte-
gration of models or neural networks developed through different
frameworks, such as Keras and PyTorch4, in transfer learning exper-
iments. Additionally, while causality may pose a potential threat,
statistically significant correlations were observed across measures
obtained using different methods, supporting the assumption that
these relationships are underpinned by robust causal links.

3 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

accuracy_score.html

4 https://pytorch.org/

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://pytorch.org/

50 detecting privacy requirements from user stories

External Validity: External validity refers to the generalizability
and repeatability of the study’s findings. Although the proposed ap-
proach is implemented in Python, the statistical models and methods
used are programming language-agnostic and can be replicated in
other programming environments, provided suitable frameworks are
available. To promote reproducibility, all tools, scripts, and data used
in this study are made publicly available as mentioned earlier.

Conclusion Validity: This aspect assesses the reasonableness of
the conclusions drawn from the research or experimental findings.
While the number of observations made for statistical tests may not
be extensive, the necessary hypotheses were thoroughly validated.
Therefore, the relationships between the data and the results are
considered robust and the conclusions drawn from the analysis are
deemed reasonable.

4
R E FA I R : T O WA R D A C O N T E X T- AWA R E
R E C O M M E N D E R F O R FA I R N E S S R E Q U I R E M E N T S
E N G I N E E R I N G

4.1 introduction

In today’s software production, data-driven machine learning (ML)
algorithms are more and more employed to support decision-making
activities performed by individuals and companies [238], other than
to automate repetitive tasks, reducing human’s workload [186].

Successful applications have been showcased in multiple domains
[64] like loan management [163], hiring decisions [149], healthcare
[2], biology [211], and more.

Despite the benefits brought by ML, researchers have been report-
ing on the implications that those algorithms may have on ethics
and fairness [142]: the reliance on historical data may lead an ML
algorithm to gather biased knowledge about the relations ruling a
phenomenon, which might lead to unfair predictions and recommen-
dations that, in turn, might reiterate discrimination and injustice [12].
As such, the definition of methods and tools able to reduce risks due
to ethical concerns represent a key challenge [12, 43].

Recently, the Software Engineering for Artificial Intelligence (SE4AI) re-
search community has been actively working on this matter, arguing
the need for novel engineering processes to treat fairness throughout
the software lifecycle. However, operationalizing this need is complex
because of the intrinsic nature of fairness.

On the one hand, fairness strictly depends on the application do-
main and the specific task an ML system is designed for [141, 171],
e.g., a feature may be sensitive in one context and not in another. On
the other hand, fairness represents a multi-faceted aspect, and, in-
deed, multiple definitions targeting various perspectives of software
fairness have been proposed in literature [222].

51

52 refair : a context-aware recommender for fairness in re

At the current stage, most of the existing approaches focus on
avoiding discrimination from data. For instance, Chakraborty et
al. [36] proposed Fair-SMOTE, an oversampling algorithm able to
rebalance training data according to sensitive attribute groups. On
a similar note, other researchers attempted to analyze the best data
preprocessing actions to keep fairness under control [17], how to
diversify data to reduce fairness concerns [152], and optimize training
data to balance fairness and accuracy [42, 81]. At the same time,
automated fairness testing procedures have been defined [70].

Recognizing these advances, Soremekun et al. [205] pointed out
the need for novel requirements engineering techniques that may let
practitioners be aware of sensitive features since the project inception.
Those instruments may have a fundamental impact on practice: being
able to provide early recommendations on sensitive features, they
may inform the entire ML engineering lifecycle, possibly making all
the involved stakeholders aware of the most suitable bias mitigation
strategies to put in place to reduce risks due to unfairness. In addi-
tion, the outcome of such a recommender may complement existing
bias mitigation approaches, empowering the whole ML pipeline by
making it more fairness-aware.

In this work, we perform the first step toward this objective and
propose ReFair, an automated requirements engineering framework
that employs natural language processing (NLP) and word embed-
ding techniques to classify sensitive features from User Stories (USs).1

We design ReFair to be context-aware. As such, it can classify applica-
tion domains and ML tasks to be implemented before recommending
the sensitive features to consider, hence addressing the needs brought
by the intrinsic nature of software fairness.

To experiment with ReFair, we create a synthetic dataset of 12,401

ML-related USs pertaining to 34 different application domains. The
results of our study showcase the capabilities of ReFair, which can
(1) classify application domain and ML tasks within the USs with an
F1-score of 97% and 90%, respectively, and (2) recommend sensitive
features with high precision.

1 The framework analyzes US titles rather than the entire structure of a US; yet, for
the sake of readability, we use the term “User Story” throughout the manuscript.

4.2 building a dataset of user stories 53

To sum up, our research provides three key contributions:

1. ReFair, a novel context-aware automated framework to support
fairness requirements engineering;

2. the empirical validation of ReFair, which showcase the capa-
bilities of our framework;

3. a publicly available replication package [184] which includes

(a) the implementation of ReFair,

(b) the dataset and scripts used to assess the framework,

(c) a technical report discussing the additional analyses con-
ducted to assess its capabilities.

4.2 building a dataset of user stories

One of our work’s challenges was the identification of a dataset of
ML-enabled system’s requirements. It should have reported domain-
specific requirements of ML-enabled systems, it should have been
diverse enough to investigate software fairness in various domains,
large enough to experiment with our approach, and generic enough
not to be explicitly tailored on fairness analysis.

Unfortunately, the current literature does not offer any off-the-
shelf solution. Hence, we proceeded with the creation of a synthethic
dataset, which we built by considering (i) the contemporary require-
ments engineering processes [85], (ii) the knowledge on the domains
where fairness impacts ML solutions [205], and (iii) the trustworthi-
ness of the generation process [230].

Figure 4.1 overviews the generation process.

4.2.1 Requirements Format Selection

Among the available standards [25, 51, 201], we focused on User Sto-
ries (USs). These represent a widely adopted instrument to describe
features of a software system from the perspective of the users that
will interact with the system being developed [85].

54 refair : a context-aware recommender for fairness in re

Requirements engineering processes of ML-enabled systems are
typically performed by means of USs [223]. USs enclose three main
elements [51]: (1) the actor, who is the main user interested in per-
forming a specific task; (2) the action, i.e., the activity to perform
using the system under development; and (3) the benefits, i.e., the
advantages the actor (and the application domain) has from acting
on the environment through the feature. Among the main advan-
tages of using USs, we identified the possibility to enclose as actions
the specific ML tasks that a software system should enable [122]. In
addition, the actor and benefits may typically enclose information on
the domain where the system should act, hence possibly providing
insights into the context-dependent fairness aspects to consider.

Datasets

Ontology

Machine learning

 Tasks Application Domains

ChatGPT
Synthetic

User Stories

Fairness datasets taxonomy analysis

Syntethic User Stories Dataset Generation

Machine
Learning

Dictionary

Knowdlege Augmentation

A Novel Synthetic Dataset of Context-Specific User Stories

Figure 4.1: An overview of the USs Dataset Generation Process.

4.2.2 A Taxonomy of Fairness-Related Application Domains and ML
Tasks

The second step toward the definition of our synthetic dataset con-
sisted of mapping the existing knowledge concerned with the appli-
cation domains and ML tasks for which software fairness concerns
arise. This step was key in our case to inform the US generation
process, i.e., without such a systematic mapping, we could not know
for which domains and ML tasks USs should have been generated.

4.2 building a dataset of user stories 55

In particular, this was a two-step process that included (1) the manip-
ulation of an existing ontology describing fairness-critical application
domains and ML tasks [64]; and (2) the augmentation of such an
ontology with the specific ML techniques for the various ML tasks.

Mapping the Existing Knowledge. We first exploited the OWL on-
tology developed by Fabris et al. [64], which maps over 250 fairness-
related datasets onto the application domains and ML tasks for which
they were used and the corresponding sensitive features representing
possible causes of unfairness. To the best of our knowledge, this
represents the most updated resource available that describes soft-
ware fairness in different contexts. The ontology was ideal for our
case, as it provides information on (i) the domains we should have
considered while generating the synthetic dataset of USs and (ii) the
ML tasks that might produce fairness concerns and that we should
have further analyzed during the generation process.

To make the ontology functional to our purposes, the first author
of this article—a SE research assistant with two years of expertise in
ML, SE4AI, and ethical AI—manually converted it into a database
reporting (1) the application domains and ML tasks classified by
Fabris et al. [64]; and (2) the sensitive features impacting fairness
within each of the application domains and each of the ML tasks.
Overall, the database included 34 application domains and 25 ML
tasks, along with the sensitive features that impact them. We made
the converted ontology available in our online appendix [184].

Augmenting the Existing Knowledge. While the original ontology
provided us with an extensive amount of application domains, the
set of ML tasks was quite restrictive. The ontology classified the
tasks based on a high-level categorization, e. g.ML classification or
regression. However, those tasks could be implemented using a
variety of models and algorithms. Building a synthetic dataset solely
relying on such a high-level classification might have negatively
impacted the conclusion validity of our study. Indeed, USs may be
defined by specifying either the problem or the solution of the ML
tasks to be developed [223], for instance they may either indicate the
general classification task to be performed (e.g. classification) or the
specific technique that will be used to implement a requirement (e.g.
a Naive Bayes classifier).

56 refair : a context-aware recommender for fairness in re

To tackle this problem, we performed a data augmentation process
aiming at enlarging the set of ML tasks considered by the original
ontology. We exploited the AI dictionary proposed by Duran Silva
et al. [61]: this is a collection of 599 specific words widely used
in different artificial intelligence areas, such as machine learning
and natural language processing. This dictionary was built using
advanced language models and various large knowledge datasets
such as arXiv, Dpedia, Wikipedia, and Scopus. Experts from several
universities have validated the final collection of keywords. Among
the keywords of the dictionary, 457 of them relate to ML or natural
language processing techniques, i. e.they report about learning algo-
rithms or models. The rationale behind the use of the dictionary was
that of exploiting this knowledge to link finer-grained techniques
to the higher-level tasks reported by the original ontology, hence
creating a comprehensive taxonomy that reports, for each application
domain, both high-level ML tasks and low-level ML techniques that
might lead to fairness-related concerns.

The mapping was manually performed by the first author, who
is referred as “the inspector” in the following. For each of the 457

relevant ML keywords of the dictionary by Duran Silva et al. [61], the
inspector (1) verified that the keyword was actually related to a ML
or NLP technique, i. e.the keyword matched an algorithm or model—
otherwise, the keyword was discarded; and (2) mapped the technique
onto one of the 25 higher-level ML tasks. When the inspector was
unfamiliar with the specific technique considered, online material,
books, or the other authors could be consulted to understand how
the mapping should have been performed, i. e.which higher-level
task would have better suited the technique. The inspector did not
find cases where the mapping could not be done: techniques reported
in the dictionary could be successfully mapped, increasing the con-
fidence in the choice of relying on the work by Silva et al. [61] to
augment the original ontology by Fabris et al. [64].

The other authors then verified the consistency of the mapping. The
disagreements cases were discussed and solved before proceeding
to the next stages. As an outcome of this stage, we could rely on a
comprehensive, multi-level taxonomy that reported the application
domains where fairness concerns arise along with the high-level

4.2 building a dataset of user stories 57

ML tasks and low-level techniques that may possibly induce the
emergence of fairness issues. In addition, it is worth remarking that—
exploiting the knowledge collected through the original ontology—
those pieces of information are directly mapped onto the specific
sensitive features that may cause fairness issues: in other terms, by
design, our augmented taxonomy can be used as a basis to create
USs that actually provide insights into the application domains and
ML techniques that may typically lead ML engineers to deal with
sensitive features.

Figure 4.2 reports a snippet of the taxonomy, showcasing examples
of mapping between ML tasks and sensitive features and between
application domains and sensitive features. The whole taxonomy is
available in our online appendix [184].

ML Task

Regression

Clustering

Data summarization

age, ethnicity, financial status, gender,
geography, race, sex

age, caste, gender, geography, male/female,
race, sex, skin tone

age, author, ethnicity, gender, geography,
race, sex, textual references to people and
their demographics

Application
Domain

Education

Finance & Marketing

Political Science

age, birth, category, caste, ethnicity, family,
wealth, financial status, gender, geography,
race, racial-ethnic group, sex

age, education, ethnicity, gender, geography,
political affiliation (representation in different
precincts), race, urban/rural

activity, age, gender, geography, race, sex

Figure 4.2: Snippet of the augmented taxonomy built.

4.2.3 Synthetic Generation of User Stories

The taxonomy represented the input of the final step of the synthetic
dataset generation process. To generate USs as realistic as possible,
we exploited the capabilities of large language models (LLMs) [22]
and, in particular, of ChatGPT.2 This is one of the most powerful
LLMs currently available and is based on the GPT-3.5 architecture.3

2 Link to ChatGPT: https://openai.com/blog/chatgpt.
3 More on GPT 3.5: https://platform.openai.com/docs/models/gpt-3-5.

https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5

58 refair : a context-aware recommender for fairness in re

A key challenge was represented by the so-called prompt engineering
[240], i.e., the definition of the most suitable query that would have
allowed ChatGPT to properly process the input and output USs
that would have effectively mimicked the actions done by a software
engineer. We experimented with multiple prompts, finally coming
up with the one whose structure is reported below.

Prompt employed to generate USs.
Considering the following:

[High-level machine learning task]
OR [Low-level machine learning technique]

in the field of [machine learning]
OR [natural language processing].

Can you provide me with specific user stories
for the following application domains?

[List of Relevant Application Domains]

The prompt was employed to systematically query ChatGPT and
generate a number of domain-specific USs equals to the number of
ML tasks/techniques that may induce fairness-related issues, accord-
ing to the taxonomy built in the previous step. Such a procedure
aimed at emphasizing the context-dependent nature of ML fairness,
putting a strong focus on domain and machine learning task speci-
ficity that serve as the foundation of our work. The generation process
was supervised, i.e., we did not blindly rely on the USs generated by
ChatGPT as these might have been unrealistic or erroneous, affecting
the overall reliability and representativeness of the dataset. Every
time a new US was generated, the first author manually verified
its consistency and degree of realism, discarding low-quality USs.
As a result of this manual validation, about 3,000 USs targeting 81

of the ML tasks originally considered in the augmented taxonomy
were removed, as they were deemed too specific for generating USs
with a structure and expressiveness close to the ones produced in
real-world development environments.

Overall, the dataset generation process required around 120 per-
son/hours and produced 12,401 synthetic USs related to 34 different
application domains. Upon completion of the generation process,
the second author double-checked the operations conducted by the
first author on a statistically significant sample of 375 synthetic USs

4.2 building a dataset of user stories 59

(confidence level=95%, margin of error=5% - min 373 instances) to
(i) further ensure the reliability of the produced dataset and (ii) to
assess its suitability in the subsequent experimental phases. More
specifically, the second author conducted a qualitative evaluation on
the statistically significant sample of synthetic USs which involved a
review against predefined criteria, including clarity, completeness,
and relevance to the anticipated experimental conditions. The analy-
sis revealed no inconsistencies. Our online appendix provides access
to the dataset, other than to additional reports and examples on the
dataset generation process and its validation [184].

The prompt provided to ChatGPT may generate synthetic USs
having different levels of granularity, i.e., they may specify the solu-
tion or the problem of the ML tasks to be developed. The motivation
behind the choice of the granularity of the generated USs comes from
existing literature in the requirements engineering domain [122] that
showed that the granularity of USs may largely vary in practice.

The original Cohn’s user story template [51] indeed described a
template to write user stories but it did not provide stringent con-
straints on how to write them. As a consequence, any development
team is free to decide on the level of granularity based on multiple
factors like the knowledge of the domain, the information made
available by the client, etc. [128]. Our synthetic dataset generation
procedure embedded these considerations and attempted to simulate
the behavior of the largest population of requirements engineers. As
such, we kept the generation as broad as possible, foreseeing the
possibility of having a diverse set of USs.

To showcase the levels of granularity of the USs in our dataset, let
consider the two examples depicted in Figures 4.3 and 4.4. In both
cases, the US pattern defined by Cohn [51] is fully met. The former
describes a solution-oriented US concerned with the application
domain named “Finance and Marketing”, where a rather specific ML
task is specified, i.e., “Nearest Neighbor Search”. The latter, instead,
refrains from specifying a ML task and revolves around the problem
of “terminology extraction”, which can be later implemented using
different methods. In this instance, the “what” conveyed is the user’s
desire to “extract the key terminology from a large corpus of academic”,
maintaining a high-level abstraction of the ML task.

60 refair : a context-aware recommender for fairness in re

Can you provide me with specific user stories for the
following application domains? Finance and Marketing

Sure, here is a potential user story for the application of nearest
neighbour search in the fields of finance and marketing:

As a marketer, I want to use nearest neighbor search to
identify customers with similar preferences or behaviours, so that
I can provide personalized marketing messages and improve

customer engagement.

Considering the following machine learning technique:
nearest neighbor search in the field of machine learning.

Chat GPT

Prompt Request

Figure 4.3: Example of solution-oriented US generated.

Can you provide me with specific user stories for the
following application domains? Literature

Sure, here is a potential user story for the application of
terminology extraction in the fields of literature:

As a researcher, I want to extract the key terminology from a
large corpus of academic so that I can understand the main

concepts and trends in my fields.

Considering the following machine learning technique:
terminology extraction in the field of machine learning.

Chat GPT

Prompt Request

Figure 4.4: Example of problem-oriented US generated.

4.2.4 Synthetic Dataset Validation

The supervised dataset generation process ensured that the synthetic
USs closely resembled the ones that a software engineer would pro-
duce, as the internal assessments suggested. This validation instilled
a high level of confidence in the dataset’s reliability. Nevertheless,
to further safeguard against potential subjectivity in the internal in-
spection, we undertook an additional and comprehensive validation
of the synthetic dataset. In particular, we let practitioners assess the
USs’s quality in our dataset. First, we extracted a statistically signifi-
cant different sample than the one used for the internal inspection of
375 synthetic USs (confidence level=95%, margin of error=5% - min
373 instances). Second, we randomly split the 375 USs into 75 groups,
each containing five USs. Third, we designed 75 online surveys - one

4.3 the refair framework 61

for each USs group - to (1) present each of the five USs and inquire
the respondents about comprehensibility, i.e., the degree to which the
US is understandable, realism, i.e., the degree to which the US is writ-
ten as a real user story, and actionability, i.e., the degree to which the
US can be used to drive the development of a ML-enabled project (the
respondents judged these properties for each proposed US through a
5-point Likert scale [14]); and (2) ask respondents to provide feedback
on how to improve the US deemed unrealistic. To avoid respondents
being biased, in either positive or negative fashion, we did not reveal
the synthetic nature of the USs under evaluation. We administered
the survey through Prolific

4, following the guidelines by Reid et al.
[187] to prevent invalid responses, and applying quality assessment
to discard unreliable responses. We cross-validated two reports for
each USs group, thus involving 150 practitioners with experience
in software design and ML. The results of the surveys corroborated
those of the internal validation: the involved practitioners (i) gave
the USs very high scores for all indicators, achieving at least ≈4 on
the Likert scale; (ii) provided recommendations on how 46 unique
USs (12%) could be improved. These recommendations were minor
and addressed ambiguous terminology affecting the readability of
the USs, not altering their core structure or intent. As such, we did
not require to propagate the changes to the other USs in the sample
nor to the entire dataset. The external validation is more detailed in
the technical report released in our online appendix [184].

4.3 the refair framework

The key idea behind ReFair is to analyze USs of ML-enabled systems
with the aim of (1) classifying the application domain of the system
being developed; (2) classifying the ML task(s) that will be employed
to implement the US; and (3) mapping those pieces of information
onto the specific sensitive features to account when working under
the classified application domain and ML task.

As such, ReFair supports the requirements engineer by provid-
ing recommendations that may inform the follow-up development

4 The Prolific administration platform: https://www.prolific.co/

https://www.prolific.co/

62 refair : a context-aware recommender for fairness in re

REFair: A Novel Automated Framework for Fairness Requirements Analysis

ML Tasks'

 Sensitive Features

User Story

 Pre-Processing

 Domain Detection

 ML Tasks Detection

Domain

ML Tasks

Domain's

Sensitive Features

Classification Analysis Sensitive Features Extraction

...
Word

Embeddings

Sensitive Features
suggested for Story's

Development
Set Intersection

Figure 4.5: ReFair: An overview of the proposed approach.

activities of the potential fairness concerns to take into account. We
are aware that other external factors, e.g., laws and regulations, may
influence the identification of sensitive features. On the one hand,
ReFair is designed to work with software engineering artifacts, i.e.,
User Stories, rather than with elements that may be hardly extracted
because of their tight relation with the specific customs or regulations
of the society where a system is being developed. On the other hand,
our framework does not aim at replacing the requirements engineer
but provide insights that may be further elaborated. From a technical
standpoint, ReFair exploits the base ontology built in Section 4.2 to
learn how to detect sensitive features based on application domains
and ML tasks, and is fed with the set of synthetic USs coming from
the dataset generation process.

We made ReFair working with the base ontology rather than with
the augmented taxonomy as we aimed at designing a generalized
framework that could not limit itself to the analysis of the currently
existing ML techniques, but that would rather allow the classification
of a set of general high-level tasks that can be adapted to multiple
application domains, hence recommending sensitive features inde-
pendently from the specific ML techniques that engineers will use.
Such a generality has an additional implication: the best ML tech-
nique to use in a given context may result from experimental analyses
performed after the requirements engineering phase. Relying on a

4.3 the refair framework 63

higher-level task classification can better inform how such investi-
gations should be performed. Hence, we argue that such a design
choice better fits the ML engineers’ needs. On the contrary, feeding
and experimenting the framework with the USs coming from the
augmented taxonomy was key to understand the robustness of the
framework. Those USs were based on different levels of granularity,
hence simulating multiple conditions arising in reality which might
challenge the capabilities of our framework.

Figure 4.5 overviews the main steps of the proposed approach. A
US represents the input of ReFair. This is preprocessed with the aim
of producing a word embedding representation of the elements of
the US. Those embeddings will feed two different ML models:

the first will be responsible for classifying the application domain
of the US, while the second will classify the most likely ML task(s)
that may be employed to implement the US. The outcomes of these
two models will then be used to map the classified application
domain and ML tasks to the corresponding sensitive features. These
will be finally presented to the user. The next sections provide more
details on each of the steps of our approach.

4.3.1 User Story Preprocessing

The first step of ReFair allows to produce a N-dimensional space
representation of the input US [113]: in turn, such a representation
enables the extraction of features out of the text that natural language
models can use for classification purposes. In other terms, this step
allows ReFair to transform the text contained within a US into a real-
valued vector that can be used in the following steps. Our framework
supports multiple word embedding techniques such as TF-IDF [189],
BERT [57], Word2Vec [146], FastText [19], and GloVe [170]. The
assessment reported in Section 4.4 aimed at experimenting with those
techniques and identifying the best one.

64 refair : a context-aware recommender for fairness in re

4.3.2 Classification Analysis

The word embeddings are then taken as input by the classification
analysis modules of ReFair. This comprises two main components:

Application Domain Classification. This component is responsible
for classifying the most likely application domain of the US among
the 34 domains available in the ontology.

We have modeled the domain detection problem as a multi-class
classification task [94], where (1) the features are represented by the
real-valued vector of the word embeddings and (2) the classification
labels correspond to the application domains of the augmented taxon-
omy. Our framework supports 25 ML algorithms that make different
assumptions on the underlying data as well as have different advan-
tages and drawbacks in terms of execution speed and overfitting. For
instance, ReFair provides users with the possibility to run probabilis-
tic algorithms, e. g.Gaussian Naive-Bayes, entropy-based classifiers,
e. g.Random Forest, semi-supervised approach, e. g.Label Propaga-
tion, and others. Our online appendix [184] reports the complete list
of ML techniques supported.

Machine Learning Tasks Classification. This is responsible for
classifying the ML tasks likely to be employed when implementing
the US. We have modeled the problem as a multi-label classification
task [215], as a US may be operationalized using multiple ML tech-
niques. For instance, the term “artificial neural network” may refer to
tasks of regression, classification, clustering, and more. As such, we
designed the framework to be conservative enough and identify all
the potential ML tasks that may lead to unfairness. From a practical
perspective, this choice may allow the users to receive a larger set
of sensitive features, hence favoring recall over precision: this was
done on purpose, as we preferred to provide users with actionable
feedback that might be later interpreted rather than with a more
restrictive set of sensitive features that may have overlooked some rel-
evant pieces of information. The implications of these design choices
are later analyzed as part of the empirical study. In this case, the
features are represented by the real-valued vector of the word em-
beddings, while the classification labels consist of the high-level ML
tasks of the augmented taxonomy.

4.3 the refair framework 65

As for the actual classification, ReFair supports established multi-
label techniques such as Binary Relevance (BR) [126], Classifier

Chain (CC) [185], and Label Powerset (LP) [209]. We rigorously
tested these techniques with popular ML algorithms such as Logis-
tic Regression (LR), Random Forest (RF), Gaussian Naive Bayes

(GNB), Linear Support Vector Classification (LSVC), K-Nearest

Neighbors (KNN), and Decision Tree (DT). We did not consider
the analysis of more advanced ML solutions, e. g.Deep Learning (DL)
neural networks, as (1) shallow ML classifiers are more interpretable
and explainable, possibly providing ReFair with an additional, rele-
vant feature that would increase its practical usability; (2) DL models
may not be required if the performance of shallow ML classifiers are
already high.

4.3.3 Sensitive Features Recommendation

The application domain and ML tasks classified in the previous step
are finally used to recommend sensitive features. ReFair exploits
the base ontology [64] to identify the sensitive features connected to
both the application domain and ML tasks concerned with the the
classified domain. The intersection of those sensitive features repre-
sents the final outcome of the framework, i. e.the outcome comprises
the set of sensitive features relevant when jointly considering the
application domain and the learning tasks.

4.3.4 Prototypical Implementation

We released the source code of the prototypical implementation of
ReFair in our online appendix [184]. For the sake of understandabil-
ity, Figure 4.6 reports a running example of our framework, which
shows how it could recommend sensitive features for the US gen-
erated in Figure 4.3. The example shows a successful classification
from the empirical study discussed later, in partucular the results
obtained when configuring the framework with (1) the XGBoost

classifier for the domain classification and (2) Linear Support

Vector Machine for the ML tasks classification. The approach cor-

66 refair : a context-aware recommender for fairness in re

activity - age - gender - geography - sex - race

Finance & Marketing

Anomaly Detection

- Clustering -
Representation Learning

 As a marketer, I want to use nearest neighbor search to identify
customers with similar preferences or behaviors, so that I can provide

personalized marketing messages and improve customer engagement.

Actor Action Benefits

...

Word Embeddings

Domain and Learning
Tasks Classification

Sensitive Features
Recommendation

 +

Figure 4.6: ReFair: Running Example.

rectly classifies Finance & Marketing as domain and identifies Anomaly
Detection, Clustering, and Representation Learning as possible ML tasks
through which the US may be implemented. The classification of
these tasks is consistent, as these are widely applied in the context of
financial applications [64]. Finally, for each ML task, ReFair maps
relevant sensitive features, recommending working activity, age, gender,
geography, sex, and race as the set of sensitive features to consider in
the subsequent implementation steps of the US. The recommenda-
tions can be considered both complete and consistent, as these are the
well-known attributes that should be considered while developing
financial ML applications.

4.4 empirical evaluation

The goal of our study was to assess ReFair, with the purpose to
measure the extent to which it may support fairness requirements
engineering. The perspective is of researchers and practitioners. The
former are interested in assessing the viability of automatically de-
tecting sensitive features from User Stories. The latter are interested
in assessing whether it may be actually employed in practice.

Specifically, we first focused on the capabilities of ReFair in classi-
fying application domains and machine learning tasks.

4.4 empirical evaluation 67

These are indeed the two aspects that determine the final accuracy
of the recommendations provided, i.e., if ReFair correctly classifies
application domains and machine learning tasks, the outcome will
be correct by definition, as the sensitive features recommended would
directly map onto the base ontology reporting the ground truth on
the fairness attributes to consider in that domain and for those ML
tasks. We formulated two research questions (RQs):

Û RQFair1. To what extent can ReFair classify ML-specific application
domains from User Stories?

Û RQFair2. To what extent can ReFair classify ML-specific tasks from
User Stories?

After assessing the classification components of ReFair, we moved
toward the evaluation of the sensitive feature recommender. When
either the application domain or the ML tasks are misclassified,
ReFair may recommend sensitive features that are inconsistent for a
given US. Hence, we formulated a third research question:

Û RQFair3. To what extent can ReFair recommend sensitive features
from User Stories?

In terms of reporting we followed the guidelines by Wohlin et
al. [232], other than the ACM/SIGSOFT Empirical Standards.5 The con-
text of the study was represented by the synthetic dataset described
in Section 4.2. For each application domain, the dataset contained
365 USs which were used to experiment with our framework.

4.4.1 Addressing RQFair1: The ReFair Application Domain Classification
Performance

We addressed RQFair1 by experimenting with the word embeddings
and domain classifiers supported by our framework.

Experimental Setting. We designed an empirical study to identify
the best classifier among the 25 ML multiclass classification algo-
rithms available within ReFair. Such an experiment was performed

5 Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given the na-
ture of the study and the standards currently available, we employed the “General
Standard”, the “Data Science”, and the “Engineering Research” guidelines.

https://github.com/acmsigsoft/EmpiricalStandards

68 refair : a context-aware recommender for fairness in re

Comparison of selected embedding techniques for the Domain Detection classifier.

TF-IDF BERT Word2Vec FastText Glove

Model F1-
Score

Accuracy Model F1-
Score

Accuracy Model F1-
Score

Accuracy Model F1-
Score

Accuracy Model F1-
Score

Accuracy

ET 0.80 0.80 XGBC 0.98 0.98 CCCV 0.91 0.91 SVC 0.94 0.94 CCCV 0.91 0.91

SVC 0.80 0.80 BC 0.98 0.98 LR 0.91 0.91 CCCV 0.94 0.94 LR 0.91 0.91

CCCV 0.80 0.80 DT 0.98 0.98 LSVC 0.90 0.90 LR 0.94 0.94 LDA 0.90 0.90

Table 4.1: Domain classifier selection - Experimental Results. ET = Extra
Trees, SVC = Support Vector Classification, CCCV = Calibrated
Classifier CV, XGBC = XGB Classifier, BC = Bagging Classifier,
DT = Decision Tree, LR = Logistic Regression, LSVC = Linear
SVC, LDA = Linear Discriminant Analysis.

through the use of Lazy Predict,6 a Python library that facilitates
the comparison of multiple models and does not require manual
parameter tuning. All the algorithms were evaluated using the five
word-embedding techniques listed in Section 4.3.1. Specifically, the
US dataset was first represented by using the ith embedding tech-
nique considered. Afterwards, we applied a ten-fold cross validation
[72] to split the dataset in ten folds and let Lazy Predict assess the
performance of each of the 25 algorithms on each fold. To effectively
manage the computational demands associated with testing multiple
combinations of word embeddings and ML techniques, we repre-
sented USs using a fixed vector of 100 tokens, independently from
the size of the requirements or the embedding method used. This
approach reduced the overall computational time required for testing
while keeping the results informative and meaningful. The results
were then analyzed using pandas [139], which allowed us to group
them and obtain the average performance for all models over all
folds. As the experiment focused on domain detection, which we
modeled as a multiclass classification task, we used F1-Score and
accuracy as evaluation criteria [174]. F1-Score is a commonly used
metric for evaluating the performance of multiclass classification
models [189]. It is computed as the harmonic mean of precision and
recall, which provides a balance between these two measures, where
precision measures the proportion of correct positive predictions
among all positive predictions and recall measures the proportion

6 The Lazy Predict library: https://github.com/shankarpandala/lazypredict

https://github.com/shankarpandala/lazypredict

4.4 empirical evaluation 69

of correct positive predictions among all actual positive instances.
Accuracy measures the overall proportion of correct predictions, re-
gardless of the class. It is computed as the ratio of correctly classified
instances to the total number. At the end of this analysis, the best
model was subject to a hyperparameters fine-tuning step to obtain
the model that best fits the supplied data. Once we had identified the
best performing classifier, we further refined it by running the Ran-
domizedSearchCV algorithm: this is an automated configuration
instrument provided by Scikit-learn, which involves testing ran-
dom combinations of values from a range, as opposed to predefined
values in classical Grid Search. This allowed us to (1) understand
whether the results obtained through LazyPredict were reliable and
(2) carry out another round of cross-validation, consolidating the
results obtained and preventing them from being facilitated by the
split used for the previous analysis.

Experimental Results. We evaluated 125 combinations of word
embeddings and classification algorithms. While the detailed results
for all models are available in our online appendix [184], Table 4.1
presents the top-3 models for each embedding technique in terms
of accuracy and F1-Score. Notably, the XGB Classifier [41]—an
implementation of gradient-enhanced decision trees designed for
speed and performance—using BERT as word embedding emerged
as the best-performing model, reaching 98% of F1-Score and accuracy.
Two other models, i.e., Bagging Classifier and Decision Tree, also
achieved the same performance, highlighting the effectiveness of
BERT as word embedding for the textual representation of our task.
Nonetheless, the combination of BERT and XGB Classifier provided
the best compromise between performance and efficiency: hence, we
deemed this model as the best one resulting from the application
domain model selection step.

In the second step, we configured XGB Classifier by considering
max-depth, learning-rate, subsample, and n_estimators as hyperparame-
ters. The best configuration was the following: {learning-rate: 0.087,
max-depth: 3, n-estimators: 80, subsample: 0.924}. The performance of
the XGB Classifier were similar to those obtained without hyper-
parameter configuration. On the one hand, this confirmed that we
could classify the application domain within USs with high accuracy.

70 refair : a context-aware recommender for fairness in re

On the other hand, our findings suggest that an additional, possibly
costly fine-tuning refinement would not be strictly required to obtain
high performance.

ø Summary of the Results. We empirically evaluated 125 ML
algorithms and word embedding combinations to address RQFair1.
The combination of BERT and XGB Classifier exhibited Accuracy
and F1-Score close to 98% in the domain detection task.

4.4.2 Addressing RQFair2: The ReFair Machine Learning Tasks Classifi-
cation Performance

Similarly to what done previously, we addressed RQFair2 by exper-
imenting with the word embeddings and machine learning tasks
classification mechanisms supported by our framework.

Experimental Setting. As described in Section 4.3.2, the classi-
fication of the ML task associated to a fairness-critical application
domain may be challenging, as multiple tasks can be used during
the development of ML-enabled systems. As such, we modeled a
multi-label classification problem, wherein USs may relate to multi-
ple ML tasks. We leveraged Scikit-multilearn [209], a BSD-licensed
library for multi-label classification that is based on the well-known
Scikit-Learn ecosystem. We exploited MultiLabelBinarizer [209] to
transform the output to be predicted. Unlike a single value indicating
the class to which it pertains, in this case, the output is represented
by an array of values indicating which classes the US belongs to.
Similarly to RQFair1, we experimented with each combination of
multi-label technique, classification model, and word embedding
method considered by ReFair, by performing a ten-fold cross valida-
tion [72]. The results were examined using pandas, which allowed us
to cluster the results and derive the mean performance for all possible
combinations across all folds. As evaluation metrics, we considered
F1-Score and Hamming Loss values for every combination. Both
metrics have been widely adopted in the context of multi-label classi-
fication problems, especially when the number of labels is large [215].
In particular, the F1-Score was computed for each label separately,
taking the average as a final performance indicator.

4.4 empirical evaluation 71

As for the Hamming Loss, this measures the fraction of misclas-
sified labels. It was computed as the average number of labels that
were incorrectly predicted for each instance.

Comparison of selected embedding techniques for ML Task Detection classifier.

TF-IDF BERT Word2Vec FastText Glove

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

Technique
+ Model

F1-Score Hamming
Loss

LP +
RF

0.88 0.06 LP +
DT

0.86 0.07 LP +
LSVC

0.86 0.07 LP +
LSVC

0.81 0.09 LP +
LSVC

0.90 0.05

LP +
DT

0.82 0.09 LP +
RF

0.84 0.08 LP +
GNB

0.76 0.12 LP +
GNB

0.81 0.10 LP +
GNB

0.72 0.15

BR +
RF

0.80 0.09 BR +
DT

0.78 0.11 BR +
KNN

0.68 0.15 BR +
KNN

0.74 0.12 BR +
KNN

0.67 0.15

Table 4.2: Machine Learning Task classifier selection - Experimental Results

Experimental Results. Overall, we empirically evaluated 90 com-
binations of word embeddings and ML task classification algorithms.
While the complete results are in online appendix [184], Table 4.2
reports the top-3 performing models for each embedding technique.
The combination of Glove, Label Powerset, and Linear Support

Vector Classification obtained the highest F1-Score and the low-
est Hamming score. Nevertheless, unlike RQFair1, where the word-
embedding technique impacted the classification results, in this
case, we discovered that the multilabel classification technique made
the difference, achieving excellent results regardless of the word-
embedding technique. More particularly, Label Powerset, in combi-
nation with different classification algorithms, achieves results above
70% in terms of F1-Score with a Hamming Loss of at most 15% in
the worst case, even with different techniques for text representation.
The best results were finally obtained by combining Label Powerset,
Glove, and LSV: the F1-Score was slightly above 90%, while the
Hamming Loss scored 5%.

ø Summary of the Results. We assessed 90 combinations of mul-
tilabel techniques, ML algorithms, and word-embedding methods.
The combination of Label Powerset, Glove, and Linear Support

Vector Classification reached an F1-Score higher than 90% and
Hamming Loss of 5% on the ML tasks classification.

72 refair : a context-aware recommender for fairness in re

4.4.3 Addressing RQFair3: The ReFair Sensitive Feature Recommendation
Capabilities

We addressed RQFair3 by comparing the output of ReFair against an
oracle reporting the actual set of sensitive features to be provided.

Experimental Setting. To address RQFair3, we first built an or-
acle reporting the correct set of sensitive features for each US of
our dataset. This was done by exploiting the base ontology [64]. As
explained in Section 4.2.2, it provided sensitive features for each ap-
plication domain and ML task: as the considered USs were concerned
with an actual application domain and ML task, we could use the
base ontology to label each US with the corresponding set of sen-
sitive features. Afterward, we compared such an oracle against the
recommendations of ReFair. This evaluation allowed us to measure
how much the misclassifications assessed in RQFair1 and RQFair2
altogether influenced the capabilities of our framework, hence pro-
viding a final assessment of the support that ReFair may provide
during requirements engineering. We computed the MoJo distance
[216] as the evaluation metric, which is a widely accepted method
to measure the distance between two partitions of the same set. This
metric ranges from 0 (indicating a completely identical set) to 1 (rep-
resenting two completely different sets). It is based on the number of
“moves” required to make the two compared sets identical. Here, a
“move” refers to either shifting a single data point from one cluster
to another or swapping the cluster assignments of two data points.
To evaluate the distance between the set of features recommended
by ReFair and the oracle for each US, we employed a specific MoJo
variant that relies on the Jaccard’s and the Mean sets overlap indexes
[143]. In addition, we analyzed the results from a more qualitative
standpoint by computing the amount of sensitive features erroneously
recommended by ReFair: to this aim, we leveraged the token-level
Levenshtein distance [145], considering each token as a sensitive
feature.

Experimental Results. The average MoJo distance computed by
comparing all the sets of sensitive features against the oracle reached
0.04, meaning that the output of ReFair was just 4% far from the
ideal one. This result indicates that the misclassifications in terms

4.5 threats to validity 73

of application domain and ML task have a marginal impact on the
overall capabilities of ReFair, hence making it a potentially suitable
instrument to support requirements engineering activities. Going
deeper, the Levenshtein distance [145] analysis revealed that ReFair

acted as a perfect recommender on 11,969 USs (97%). Of the remaining
432 (3%), in 41 cases (less than 1%) the feature sets of ReFair and the
oracle differed by only 1 feature, 70 (0.6%) differed by 2 features, and
321 (less than 3%) differed by more than 2 features. By analyzing
the latter cases more closely, we observed that (1) these would have
still led ReFair to provide some support in a real case scenario, as
the set of recommendations were partially correct, i.e., wrong rec-
ommendations were up to 52.5% of the recommendations provided
by ReFair; and (2) they were mostly due to specific application do-
mains, e.g., Health, and ML tasks, e.g., Classification which were those
more often misclassified. This suggests that further improvements of
ReFair could revolve around the addition of targeted data samples
or the application of data augmentation methods able to provide
the framework with a more consistent knowledge. We report addi-
tional analyses into the capabilities of ReFair per application domain
and ML task as part of the technical report that accompanies this
submission [184].

ø Summary of the Results. The MoJo distance showed a near-
perfect match (0.04) between the set of sensitive features recom-
mended by ReFair and by the oracle. Our framework acts as a
perfect recommender in 90% of the cases, providing mostly wrong
recommendations in just 5% of the cases.

4.5 threats to validity

Our study suggested that ReFair may represent a valuable instru-
ment, yet various aspects might have biased the conclusions drawn.

Threats to External Validity. A first threat is represented by the
user story format employed in the study. While this possibly limits
the applicability of ReFair, previous studies showed that these are
widely used in the requirements engineering of machine learning-

74 refair : a context-aware recommender for fairness in re

enabled systems [223]. As part of our future research agenda, we
plan to generalize the framework to other formats.

Our framework was built on top of the current knowledge on
the fairness-critical application domains and machine learning tasks
[60, 64]. As such, its application is limited to such a knowledge.
However, ReFair was designed to be easily extended; the source
code is publicly available so that researchers can build on top of it.

The generalizability of the results might have been threatened by
the granularity of the USs automatically generated and, more in
general, by the use of synthetic USs to experiment with ReFair. As
explained in Section 4.2.3, we accounted for the liberty developers
have in real-case scenarios [122], hence enabling the generation of
both solution- and problem-oriented USs that might have simulated
a realistic use case for ReFair. Nonetheless, further investigations
into the generalizability of these USs should be pursued. To partially
mitigate such a threat to validity and preliminarily assess how ReFair

may work in a realistic environment, we conducted a qualitative
experimentation involving real-world ML engineers. The goal was
to understand the capabilities of our framework when run against
manually-written requirements specifications. We involved 20 ML
engineers from our contact network and asked them to develop
requirements specifications that could be later employed to assess
the soundness of our framework. The participants had between two
and five years of professional experience, had knowledge on both
software engineering and artificial intelligence. We involved them
through e-mails, by asking for a volunteer participation.

Upon confirmation of their participation, we sent them a link to
an online questionnaire which comprised three sections. The first
presented the informative consent: we clarified that the answers
would have kept anonymous to preserve privacy and that their
responses would have been used for a research submission. The
second aimed at collecting demographic data. The third proposed
a problem statement concerned with a specific machine learning
domain among those investigated in this study [64]. For instance,
one of the problem statements revolved around the definition of a
ML-based software system able to classify cancer types based on
genomic data. While each participant was assigned to a problem

4.5 threats to validity 75

statement pertaining to a different domain, we could not assess all 34

domains considered in the study because of the lack of participants.
The problem statements were crafted by the first author, who elab-

orated them with the help of online resources and existing projects,
in an effort of producing realistic cases to propose to the partici-
pants. The full set of problem statements are available in our online
appendix [184].

Participants were asked to carefully read the problem statement
they were assigned to and produce up to ten requirements involving
the machine learning solutions that may be employed in the context.
We gave them ten days to deliver, collecting a set of 119 requirements
that could be classified by ReFair, which was configured according
to the empirical results presented in Section 4.4.

We could not compute precise performance metrics because of
the unavailability of a ground truth for these requirements, yet we
manually went through a qualitative analysis and assessed whether
these might have been considered similar or meaningful. We noticed
that the major differences between the manually- and automatically-
generated USs were due to two aspects. On the one hand, the par-
ticipants’ knowledge on the problem statements presented: when
participants were not familiar enough with the domain, they in-
deed developed more generic USs that were hard for ReFair to
correctly handle. On the other hand, the machine learning engineers’
experience with requirements engineering: we noticed that more ex-
perienced practitioners were able to develop higher-quality USs that
better characterized the elements to be implemented, hence allowing
ReFair to properly classify potential sensitive features. In conclu-
sion, the qualitative investigation confirmed the value of ReFair, yet
discovered the potential boundaries that may affect its capabilities,
namely domain familiarity and experience of the practitioners that en-
gage with the framework. As part of our future research agenda, we
aim at performing larger-scale studies that might better assess the
differences between manually- and automatically-written USs, other
than the implications for the classification performance of ReFair.

Threats to Construct Validity. Our study was designed to take
the context-dependent nature of software fairness into account, i.e.,
some sensitive features might be considered as such depending on

76 refair : a context-aware recommender for fairness in re

the context: as such, we trained and tested ReFair on USs coming
from a large variety of fairness-critical domains [64].

Additional, hardly operationalizable external factors, e.g., laws
and regulations, may influence the identification of sensitive features:
as any recommendation system, ReFair must be considered as an
assistant rather than a tool to replace the requirements engineer by
providing insights that might be relevant for the development of USs.

As for the synthetic dataset, we built it on top of the existing
knowledge on requirements engineering [205, 223] and software fair-
ness [64], favoring the generation of USs having different levels of
granularity [122] and employing a reliable Large Language Model
like ChatGPT, which we inquired only after experimenting with
multiple prompts. The internal validation of the dataset quality, other
than the external validation conducted with practitioners, increased
our confidence on its validity and suitability for our purposes. Repli-
cations of our study on real-world datasets would still be desirable
and part of our future research agenda.

We built a prototypical implementation of ReFair by experiment-
ing with a wide set of shallow machine learning algorithms to classify
application domains and tasks within user stories. We did not make
use of advanced artificial intelligence solutions, e. g.deep learning
algorithms. While they might have offered additional insights into
the capabilities of our framework, we favored the analysis of simpler
models which are less demanding in terms of computation costs and
training data, other than being more interpretable. The high classifi-
cation performance obtained by those simpler models increased the
confidence of our design choices, even though we plan to investigate
the contribution of more complex classification models as part of our
future research agenda.

Threats to Conclusion Validity. We assessed the classification com-
ponents of ReFair by experimenting with multiple classifiers and
word embedding techniques, computing well-established metrics,
i.e., F1-Score and accuracy, that have been widely used to compre-
hensively assess multiclass and multilabel classification algorithms
[189, 215]. As for the sensitive feature recommender, we defined eval-
uation metrics that could well represent the capabilities of ReFair in
recommending appropriate sensitive features.

4.5 threats to validity 77

Another threat concerns the use of the same dataset to train and test
our approach. In this respect, there are three considerations to make.
First, we had no alternatives than using the synthetic dataset, given
the lack of alternatives in literature. Second, we made sure not to mix
training and testing data by performing a ten-fold cross validation: in
each iteration one fold was retained as the test set and left untouched,
while the remaining folds were used for training. By doing that, we
ensured the ReFair was always experimented against unseen data.
Last but not least, after addressing our research questions relying on
the synthetic dataset, we performed a more qualitative investigation
into the performance of ReFair on a manually-generated dataset of
USs. This qualitative analysis was explicitly designed to verify how
ReFair may work when applied on a dataset different than the one
used for training. The conclusions drawn in our qualitative study
still pointed out the promising performance of our approach: of
course, we are aware of the need for further, larger-scale evaluations
of ReFair but, at the same time, we believe that the results provided
so far represent a valuable contribution to the research community.

5
B E Y O N D D O M A I N D E P E N D E N C Y I N S E C U R I T Y
R E Q U I R E M E N T S I D E N T I F I C AT I O N

5.1 introduction

Effective requirements gathering is essential for successful software
development, as inaccuracies or omissions can disrupt the entire soft-
ware lifecycle [172, 203]. While stakeholder communication mitigates
some challenges in requirements engineering (RE), it is often insuffi-
cient for identifying non-functional requirements (NFRs), particularly
security requirements. These requirements are challenging to discern
due to stakeholders’ limited expertise and their implicit presence in
documentation [110, 159, 166, 198]. The importance of security as an
NFR is underscored by the substantial financial impact of security
breaches [8], necessitating explicit identification and specification of
security requirements, which are often implicitly distributed across
requirement specifications [104, 117].

The manual identification of security requirements is error-prone
and time-consuming, highlighting the need for automation. Current
research predominantly employs supervised machine learning (ML)
methods [48, 104, 117], which prioritize statistical lexical features over
syntactic structures and semantic relationships. Consequently, these
models often struggle to distinguish nuanced contextual meanings,
leading to limited generalizability across diverse domains due to
their reliance on large, domain-specific datasets [151]. To address
domain-specific limitations, Munaiah, Meneely, and Murukannaiah
[154] proposed a one-class classification model trained on the Com-
mon Weakness Enumeration (CWE) database. While this approach
demonstrated the potential of domain-independent approach, it re-
lied solely on CWE descriptions, leaving questions about the role on
the impact of using broader vulnerability datasets unanswered. Fur-
thermore, its reliance on One-Class SVM (Support Vector Machine)

79

80 beyond domain dependency in security requirements identification

highlights the need for exploring alternative classification techniques
to improve and facilitate the security requirements identification task.

Recognizing these previous findings, in this work we assess the ef-
fectiveness of shallow and advanced techniques for detecting security
requirements, emphasizing ML and BERT-based models that offer
the capability of fine-tuning for various NLP-based tasks, including
sequence classification [57, 221].

We first assess if shallow ML models can identify security require-
ments within the same domain, motivating our first RQ:

RQSec1. How effectively can shallow machine learning algo-
rithms, based on word embeddings, identify security-related re-
quirements coming from the same domain?

A positive answer to RQSec1 provides an alternative approach with
respect to the methodologies previously implemented in [48, 104,
117], and avoiding the dependency on extensive datasets for model
training as done in [48, 151]. To address RQSec1, we extensively exper-
iment with 5 embedding techniques and 30 ML algorithms, totaling
150 solutions. After identifying the most effective combinations, we
optimize hyperparameters and leverage ensemble learning (stack-
ing, bagging, voting) in attempt to improve predictive performance.
We evaluate the accuracy on datasets of requirements previously
used in literature, i.e., Common Electronic Purse (ePurse), Customer
Premises Network (CPN), and the Global Platform Specifications
(GPS) [104, 117]. In the following, we will refer to this setup experi-
ment with the term intra-domain, as we train and validate the models
on requirements coming from the same domains.

We assess the generalizability of the approach by testing the models
on datasets different from those used for training (meaning that
requirements come from another domain). To address this aspect of
the research, we formulate the following research question:

RQSec2. How effectively can shallow machine learning algo-
rithms, based on word embeddings, identify security-related re-
quirements coming from different domains?

It should be noted that our methodology intentionally limits the
number of projects used to better replicate real-world conditions,
where typically few projects are available. This contrasts with the
approach taken in [151], which utilized 15 diverse projects, of which

5.1 introduction 81

only three were from the industrial sector. We consider the work of Li
and Chen [117] as the baseline for these comparisons, as it represents
the best result achieved in this scenario.

To evaluate RQSec2, we train several WE and ML combinations
on 6 datasets formed by 3 individual collections of requirements
(CPN, ePurse, and GPS), as well as the 3 combinations formed by
combining two of the three collections (CPN & ePurse, CPN & GPS,
ePurse & GPS). The trained models are used to classify security
requirements of datasets not included for training, performing hold-
out validation. RQSec2 exploration finds optimal hyperparameters
for the top combination, and tests ensemble learning strategies as in
RQSec1. In the following, we will refer to this experiment with the
term inter-domain, as we train the models on requirements coming
from a particular set of domains and validate on requirements from
different domains.

The challenge of acquiring datasets that are independent of specific
domains becomes evident, as they are scarce and demand extensive
curation by domain experts. To overcome this constraint, we broaden
our search beyond the problem domain to include solution domains,
specifically focusing on the CWE and Common Vulnerabilities and
Exposures (CVE). CWE serves as a formal catalog of software weak-
ness types, while CVE provides a standardized list of known cyber-
security vulnerabilities. This method mirrors that of [154], where a
one-class classification model was trained on descriptions from the
CWE to contextualize system weaknesses. Building on this concept,
we formulate the following research question:

RQSec3. How effective can pre-training context in BERT trans-
formers be on the detection of security-related requirements?

To address RQSec3 we pre-trained three distinct BERT models, each
leveraging different datasets: (1) descriptions from CWE and the
CVE; (2) the Defect Detection dataset [239] tailored for the Insecure
Code Detection task; and (3) a combination of both datasets. This
strategy, particularly the use of BERT’s pre-training phase, addresses
the challenge of detecting inter-domain security requirements in
scenarios where diverse project data for training is scarce. In fact,
BERT’s pretrained representations capture rich semantic information
from large text corpora, allowing the model to generalize well to

82 beyond domain dependency in security requirements identification

diverse tasks with minimal finetuning. This bridges the gap between
requirement specifications and vulnerability descriptions, paving
the way for a robust inter-domain classifier to advance automated
security requirement identification.

In summary, the contributions of this work are:

1. Benchmarking shallow and deep learning approaches including
ML and fine-tuned BERT for security requirement detection.

2. Investigating combined word embeddings and ML algorithms
for intra-domain security requirement identification.

3. Testing real-world applicability by evaluating inter-domain
security requirement classification.

4. Recognizing labeled cross-domain data scarcity, pre-training
BERT on security databases for contextual knowledge to iden-
tify requirements expressed differently across projects.

5. A publicly accessible replication package [6] is provided, en-
abling researchers to reproduce our findings or to further de-
velop upon our work.

5.2 empirical study design

In this section, we outline the empirical study design, starting with
the rationale for formulating the research questions. We then detail
the datasets used for experimentation, the evaluation criteria for pre-
dicting accuracy of the considered approaches, and discuss potential
threats to the study’s validity.

5.2.1 Research questions

This study aims to assess the effectiveness of shallow and advanced
techniques for detecting security requirements, particularly by ex-
ploiting ML algorithms and BERT-based models, which allow fine-
tuning for different NLP-based tasks, such as sequence classification.

We start by assessing whether shallow ML models can be used for
the task, which led to the formulation of the first research question:

5.2 empirical study design 83

RQSec1 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related require-
ments coming from the same domain?

The formulation of this research question aims to understand
which of the possible combinations of WE and ML algorithms
presents the best performances by following the strategy shown
in Figure 5.1.

Requirements

...

Word
Embeddings ML Algorithm Output

Best Combination

Grid Search CV Ensemble Learning

150 possible Combinations
Step 1

Step 2 Step 3
Top 3 Combinations

Figure 5.1: Procedure employed to address RQSec1 and RQSec2.

We experiment with 5 embedding techniques and 30 ML algo-
rithms, totaling 150 possible solutions, to find the best combination.
The word-embedding techniques we adopt are TF-IDF, Word2Vec,
GloVe, FastText, and BERT. The choice and experimentation of these
techniques are not random, as each technique has its peculiarities
and other studies have used the same ones (e.g., [67]).

TF-IDF [182] is based on statistics of the frequency of words in
a document and their importance concerning the entire corpus. It
is characterized by its simplicity and interpretability, being effec-
tive for problems in extracting information from textual documents.
Word2Vec [146, 148] is known for capturing semantic relationships
between words via dense word vectors. It is particularly suitable for
applications that require a deeper understanding of word meaning,

84 beyond domain dependency in security requirements identification

such as semantic clustering and similarity analysis. GloVe [169] com-
bines co-occurrence statistics of words in a corpus with matrix-based
optimization. It effectively captures global relationships between
words and retains information on the semantic structure of the data.
FastText [20, 92, 93] is known for its ability to handle subword infor-
mation, making it suitable for languages with rich morphology. It is
ideal for classifying texts and searching for similar documents with
common roots. BERT [57] is a transformer-based embedding model
that can capture the bidirectional context of words. It is particularly
effective in tasks such as machine translation and text summarization.

We empirically investigate the optimal classifier from the 30 dif-
ferent classification algorithms provided by Lazy Predict1, a Python
library streamlining the comparison of numerous models, obviat-
ing the need for manual parameter tuning. The assessment of all
these algorithms is conducted employing the five aforementioned
word-embedding techniques. After identifying the most effective
combinations (Step 1 in Figure 5.1), our analyses encompass two
aspects: the first facet of our investigation is to optimizing hyper-
parameters for the selected ML model (Step 2 in Figure 5.1), and
the second revolves around implementing ensemble learning tech-
niques leveraging the top three combinations (Step 3 in Figure 5.1).
The pursuit of optimal hyperparameters is realized through Grid
Search Cross-Validation (GridSearchCV) [168], a well-established
and rigorous method renowned for its exhaustive exploration of
the hyperparameter space. This process is designed to fine-tune the
selected ML model, enhancing its precision and adaptability to the
specific task at hand. In the realm of ensemble learning, we explore
stacking [233], bagging [23], and voting methodologies [241]. It is
worth noting that in this analysis, we employ data coming from a
collection of industry requirements of three different projects: ePurse,
CPN, GP. Details about the datasets can be found in Section 5.2.2.
These datasets have been chosen because previous studies exploited
them [104, 117], allowing us to carry out a comparison with existing
classification models.

1 The Lazy Predict library: https://github.com/shankarpandala/lazypredict

https://github.com/shankarpandala/lazypredict

5.2 empirical study design 85

In particular, as in previous investigations, we perform two types
of analysis:

(a) when the models are trained and validated on the same set of
requirements (i.e., intra-domain) and

(b) when the models are trained on a collection of requirements
and then validated on a different set of requirements (i.e., inter-
domain).

Thus, with RQSec1, we want to understand which of the analyzed
approaches presents the best performance when evaluated on data
coming from the same domain of the training dataset, addressing
point (a). Having three different sets of requirements from Knauss et
al. [104] and Li and Chen [117], we validate the built models on each
of these datasets and their combinations for a total of seven datasets.
The seven combinations are obtained using the three individual
datasets (CPN, ePurse, and GPS), the three combinations obtained
using each time two of the three collections of requirements (CPN
& ePurse, CPN & GPS, and ePurse & GPS), and the combination
obtained using all of them (CPN & ePurse & GPS). We apply a 10-fold
cross-validation on each of the datasets and their combinations, using
at each iteration a different set for training and testing starting from
the whole set of requirement considered, to verify that the obtained
results are not the product of chance (see Section 5.2.2).

To address point (b), we formulate the following research question:

RQSec2 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related require-
ments coming from different domains?

To answer RQSec2, the WE and ML algorithm combinations are
trained on six datasets. These datasets are formed by combining three
sets of requirements collections (CPN, ePurse, and GPS) and three
combinations derived from pairing two of the three requirement
collections each time (CPN & ePurse, CPN & GPS, and ePurse &
GPS). The obtained models are then used to identify the security
requirements of the collection not included in the training set (e.g.,
the models trained on ePurse are used to classify the requirements

86 beyond domain dependency in security requirements identification

included in CPN and GPS, the models trained on CPN & GPS are
used to classify the requirements included in ePurse), thus perform-
ing a hold-out validation. See Section 5.2.2 for details regarding the
complete list of training and test sets employed.

As in the case of RQSec1, we conduct a deeper analysis to iden-
tify the optimal hyperparameters for the leading combination and
practical experiments involving various ensemble learning strategies.

Thus, with RQSec2, we want to evaluate the generalizability of the
approaches considered in RQSec1. For this reason, the training and
test data must belong to different domains.

However, obtaining training datasets for multipe domains is chal-
lenging. Creating such datasets involves the laborious task of having
domain experts classify requirements into security and non-security
categories, which is a time-consuming process. Consequently, re-
liance on datasets coming from a particular domain can restrict the
practical applicability in a real-world scenario for automated security
requirement identification.

To address this limitation, we broadened our focus beyond the
problem domain to include solution domains, leading us to consider
the Common Weakness Enumeration (CWE) and Common Vulner-
abilities and Exposures (CVE) as potential training datasets2. CWE
provides a structured catalog of software weakness types, offering
a standardized language for describing security vulnerabilities in
architecture, design, and code. Similarly, CVE is a comprehensive list
of documented cybersecurity vulnerabilities, widely used for refer-
encing and tracking issues across software and hardware systems.

It is worth noting that software weaknesses can be seen as the
aftermath of unmet security requirements. We consider the language
employed to characterize security requirements and the one used
to delineate weaknesses share commonalities, making it conceivable
to train a inter-domain security requirements classifier using the
descriptions of weaknesses and vulnerabilities. Take, for example, a
requirement in the GPS dataset, such as “When relevant, a Security
Domain must verify the signature of load file data blocks upon request from
the OPEN”. This requirement displays a resemblance to the descrip-

2 https://cwe.mitre.org/index.html

https://cwe.mitre.org/index.html

5.2 empirical study design 87

tion of CWE-347, which articulates that “The product does not verify, or
incorrectly verifies, the cryptographic signature for data.” (example used
also by Munaiah, Meneely, and Murukannaiah [154]). The conver-
gence in both language and content between these two instances
strengthens our hypothesis that an approach capable of identifying
security requirements in a domain agnostic manner is indeed viable.
To this end, the following research question is formulated:

RQSec3 How effective can pre-training context in BERT transform-
ers be on the detection of security-related requirements?

We leverage an extensive corpus of textual descriptions as well as
insecure code related to software weaknesses and vulnerabilities to
investigate the feasibility of training a domain-independent security
requirements classifier. We recognize that the descriptions and the
code in CWE and CVE databases contained rich and comprehensive
information about various security-related issues in software.

We initiate the pre-training of a BERT model to harness this valu-
able textual data. BERT is an advanced natural language processing
model renowned for its ability to grasp contextual information from
extensive text datasets, enabling effective generalization to various
tasks with minimal fine-tuning. In this case, we pre-train the BERT
model using the textual descriptions from CWE and CVE, and the
code from CodeXGLUE Defect Detection dataset [239], allowing it to
understand the nuanced language used to describe software weak-
nesses and vulnerabilities as well the related portions of code. See
Section 5.2.2 for details regarding the descriptions of weaknesses
and vulnerabilities. This pre-training step is crucial in preparing the
BERT model to identify security requirements across diverse domains
effectively. The model is exposed to various security-related codes,
languages and terminology, enabling it to recognize the patterns
between security requirements and software vulnerabilities.

By employing this approach, as shown in Figure 5.2, we aim to
bridge the gap between the language used to express security re-
quirements and the descriptions of known vulnerabilities, ultimately
paving the way for a more robust and domain-independent security
requirements classifier.

For this reason, we end with four distinct BERT models:

88 beyond domain dependency in security requirements identification

• BERT ((1) in Figure 5.2): The specific text corpus used for pre-
training BERT can vary depending on the variant of BERT
and the objectives of the pre-trained model. The original BERT
model, developed by Google AI, was pre-trained on a combi-
nation of the BooksCorpus dataset (consisting of 11,038 books)
and the English Wikipedia (comprising approximately 2,500

million words). In this study, we utilize the BERT base un-
cased version, typically pre-trained on a substantial volume of
text data collected from diverse sources on the web, including
books, articles, websites, and more.

• CweCveBERT ((2) in Figure 5.2): Derived from the BERT base
uncased model, we augment the pre-training phase by incorpo-
rating descriptions of CWE and CVE.

• CodeBERT ((3) in Figure 5.2): CodeBERT [65] is a bimodal
pre-trained model designed to understand and bridge natural
language (NL) and various programming languages (PL), such
as Python, Java, JavaScript, and others. CodeBERT captures the
semantic relationships between natural language and program-
ming language and generates versatile representations suitable
for a wide range of NL-PL understanding tasks (e.g., natural
language code search) and generation tasks (e.g., code docu-
mentation generation). CodeBERT was pre-trained using code
repositories from GitHub in six different programming lan-
guages. The bimodal data points in this model consist of pairs
of source code and their corresponding function-level natural
language documentation. In this work, we employ a version
of CodeBERT fine-tuned on the CodeXGLUE Defect Detection
dataset [239] for the Insecure Code Detection downstream task.

• CweCveCodeBERT ((4) in Figure 5.2): This model is a com-
bination of the two previously mentioned BERT models, i.e.,
CweCveBERT and CodeBERT. Specifically, we initiate from
CodeBERT and extend the pre-training process to include a text
corpus composed of descriptions from both CWE and CVE.

5.2 empirical study design 89

Text Corpus

BERT model

Requirements

Output

Pre-training context

Fine-Tuning
BERT model

Possible Text Corpus
(1) BookCorpus & English Wikipedia
(2) CVE & CWE Descriptions
(3) CodeXGLUE Defect Detection
(4) CVE & CWE Descriptions &
CodeXGLUE Defect Detection

BERT models
(1) BERT
(2) CveCweBERT
(3) CodeBERT
(4) CveCweCodeBERT

Figure 5.2: Procedure employed to address RQSec3.

5.2.2 Datasets

Table 5.1 provides an overview of the sets of requirements consid-
ered. The datasets comprises lists of requirements specified for their
respective projects. The sole exception is the United Nations reg-
ulations dataset (TestData), which combines three documents from
the automotive sector (UN-R155, UN-R156, and UN-R157). These
regulations differ in their level of security relevance. Most of the
individual requirements consist of only one sentence, while others
contain two sentences, with an average number of words per require-
ment indicated in the last column in Table 5.1. Below is an example
extracted from Promiseexp:

“The product shall ensure that it can only be accessed by authorized users.
The product will be able to distinguish between authorized and unauthorized
users in all access attempts”.

The advantages of using these sets of requirements are:

• different approaches have been evaluated on these sets (e.g.,
Knauss et al. [104]; Munaiah, Meneely, and Murukannaiah
[154]; Li and Chen [117]; Mohamad et al. [151]) allowing us to
perform a direct comparison with our proposal;

90 beyond domain dependency in security requirements identification

Table 5.1: Requirements specifications considered in our empirical study.

Dataset (Abbreviation)
Total Security Avg. Words per

Requirements Requirements Requirement

Common Electronic Purse (ePurse) [104, 117, 151] 124 83 29

Customer Premises Network (CPN) [104, 117, 151] 141 31 24

Global Platform Specifications (GPS) [104, 117, 151] 174 63 31

Collection of 12 projects (TrainData) [151] 3369 652 25

United Nations regulations (TestData) [151] 362 47 43

PROMISE expanded version (Promiseexp) [120] 969 125 18

• the specifications cover different application domains, allowing
to evaluate the generalizability of the trained models;

• the requirements specifications in CPN, ePurse, and GPS come
from industrial environments, and the success of their clas-
sification can demonstrate the usefulness of our approach in
industrial settings.

To address the challenges in validating machine learning models,
a dataset must be carefully managed, ensuring (i) the use of distinct
data for training and validation, (ii) systematic selection of training
requirements for reproducible and representative results, and (iii)
avoidance of overfitting to prevent models from being limited to
specific training data. Typically, k-fold cross-validation is employed to
mitigate these issues, randomly sorting the dataset into k equal parts,
training the classifier on k - 1 parts, and evaluating its performance
on the remaining part [38, 86, 227].

The choice of k is critical: a low value for k makes the evaluation
less complicated and faster, characterized by a low variance but with
the possibility of having more biases. Therefore, we should determine
k experimentally to ensure unbiased results, while minimizing the
complexity of our evaluation. According to Chantree [38], Knauss
et al. [104], and Li and Chen [117], k=10 is an appropriate value for
this purpose. With a value of k larger, the partitions may become too
small with the risk of not containing a security-relevant requirement.

Thus, in our study, we apply a k(=10)-fold cross-validation to assess
the performance of the proposed solutions. It is worth noting that
the k-fold cross validation has not been applied in the experiment

5.2 empirical study design 91

for the RQSec2 and to assess the BERT-based models built to answer
RQSec3 because they require that the test and training data belong
strictly to different domains.

To systematically explore the hyperparameter space, GridSearchCV,
a technique for hyperparameter tuning in ML, is employed. Grid-
SearchCV automates the process of systematically testing different
combinations of hyperparameters to find the best set of hyperparam-
eters for a given model. This approach ensures that the model’s per-
formance is optimized with respect to the selected hyperparameters.
It combines grid search, which exhaustively explores a predefined
set of hyperparameter combinations, with cross-validation, which
assesses model performance to avoid overfitting.

Grid search with cross-validation combines these two techniques
by performing grid search on each fold of the cross-validation. For
each hyperparameters combination, the model is trained k times,
and the performance metrics are averaged over the k iterations. The
outcome of grid search with cross-validation is the combination of
hyperparameters that yields the best performance on the validation
data. This approach helps in optimizing a model’s hyperparameters
and ensures that the selected configuration is less likely to be overfit
to a specific dataset.

Taking into account these validation methods, to answer RQSec1

and RQSec2, we consider the first 3 sets, i.e., CPN, ePurse and GPS,
and their combinations to train and test the different combinations of
word embedding and ML algorithm (see Table 5.2). The remaining
datasets, i.e., TrainData, TestData, and Promiseexp, are useful for evalu-
ating the BERT-based approaches built to answer RQSec3. TrainData

have been used to finetune the different BERT models and TestData

and Promiseexp to test them.
Before evaluating BERT models we pre-trained them on the CWE3

and CVE4 descriptions catalogs. Below, we provide two examples
of descriptions that help identify the displayed requirement from
Promiseexp as security-related:

3 We downloaded it at: https://cwe.mitre.org/data/downloads.html
4 We downloaded it at: https://www.cve.org/Downloads

92 beyond domain dependency in security requirements identification

CWE-ID 203:“The product behaves differently or sends different re-
sponses under different circumstances in a way that is observable to an
unauthorized actor, which exposes security-relevant information about the
state of the product, such as whether a particular operation was successful
or not.”.

CVE-2020-0015:“In onCreate of CertInstaller.java, there is a possible
way to overlay the Certificate Installation dialog by a malicious application.
This could lead to local escalation of privilege with no additional execution
privileges needed. User interaction is needed for exploitation.”.

Table 5.2: List of datasets used for training and test in each research ques-
tion.

RQSec1 RQSec2 RQSec3

10-fold cross-validation Training set (Test set) Different Pre-training setup (Figure 5.2)

CPN CPN (GPS) Fine-tuned on TrainData & CPN & GPS & ePurse

GPS CPN (ePurse) TestData

ePurse ePurse (CPN) Promiseexp

CPN & GPS ePurse (GPS)

GPS & ePurse GPS (ePurse) Fine-tuned on TrainData

CPN & ePurse GPS (CPN) CPN

CPN & GPS & ePurse CPN & ePurse (GPS) GPS

CPN & GPS (ePurse) ePurse

GPS & ePurse (CPN)

5.2.3 Evaluation criteria

To assess the accuracy of our solutions, we employ widely used
information retrieval criteria: Accuracy, Precision, Recall, and F1-
score [9, 173].

Accuracy It measures the proportion of total correct predictions (both
true positives and true negatives) out of all predictions made by
the model (true positive + true negative + false positive + false
negative).

5.2 empirical study design 93

Precision Calculated as true positive / (true positive + false positive), it
indicates the correctness of the predictions provided by the
model.

Recall Calculated as true positive / (true positive + false negative), it
measures the completeness of the predictions provided by the
model.

F1-score Defined as the harmonic mean of Precision and Recall, it indi-
cates the balance between these two measures. We consider the
weighted-averaged F1-score, calculated by taking the mean of
all per-class F1-scores while considering each class’s support.

We use these criteria because they are considered equally impor-
tant in a binary classification task. The datasets used in this study
enable the quantification of these criteria, as they include informa-
tion about the actual class labels. For our study, the higher Recall
could be considered more important than higher Precision, because
stakeholders may be more interested in a tool that can capture all pos-
sible security requirements rather than focusing on the correctness of
predictions [104]. In addition, these criteria allow comparison with
previous work in the literature, leading us to understand and analyze
the effectiveness and importance of our approach. The goal is to try to
observe how accurate the models are in identifying security-related
requirements and to catch their limitations in the above task.

As for the evaluation of the achieved results, to draw conclusions
we consider a model characterized by an F1-score value greater than
0.7 to be good, as other work has also used this threshold as an index
of model goodness [86, 104].

Furthermore, to establish if one model allows obtaining signifi-
cantly better predictions than other models, we perform statistical
tests aiming at assessing whether the differences observed by apply-
ing the chosen evaluation criteria (i.e., Accuracy, Precision, Recall,
and F1-score) are legitimate or due to chance [226]. Specifically, we
use McNemar’s test to compare the performances of our prediction
models [89, 192]. Indeed, Japkowicz and Shah [89] and Salzberg
[192] recommend McNemar’s test to compare the performances of
two models because it has a lower probability of error because it

94 beyond domain dependency in security requirements identification

makes fewer assumptions. In particular, given the predictions of two
models, A and B, and truth labels, a contingency table is calculated
to examine the number of cases in which the following occurs: (i)
Both classifiers are correct; (ii) Both classifiers are incorrect; (iii) A is
correct and B is incorrect; (iv) B is correct and A is incorrect. Through
this table, it is possible to estimate the probability that A is better
than B at least as many times as observed in the experiment [192].

To compare the performance of our classifiers, the following null
hypothesis is considered:

Hn0: The considered BERT-based models are equally accurate in identify-
ing security requirements.

McNemar’s test allows us to test the null hypothesis by comparing
each pair of models under the same null hypothesis. As usual, for
the performed statistical tests we consider accepting a probability of
5% of committing a Type-I-Error [232], thus a p-value of 0.05 as a
threshold of “significance”, i.e., a p-value less than 0.05 implies that
the results obtained are unlikely to be due to chance, allowing the
null hypothesis to be rejected. It is important to note that in our study,
to answer RQSec3 we compare three models 5, thus to verify if one
model can provide significantly better predictions than the other two
models, we apply two tests. As a consequence, we apply a Bonferroni
correction to classify the p-values as significant (i.e., to reject the null
hypothesis and positively answer our research questions) [52, 58].
Since the number of tests is two, the correction applied is: 0.05/2 =
0.025 in the case of RQSec3.

5.3 results and discussion

In this section, we present the outcomes of our investigation and
provide the answer to each research question posed.

5 Note that we implemented four BERT models but we “discarded” CweCveBERT,
i.e., the one pre-trained on solely CWE and CVE descriptions catalogs, because in
the first round of evaluation is the one that performed the worst, thus we excluded
it in finding the statistical significant difference.

5.3 results and discussion 95

5.3.1 RQSec1 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related requirements
coming from the same domain?

Table 5.3 shows the overall results (in terms of Accuracy and F1-
score, indicated as Acc and F1 in the table, respectively) obtained
by the built combinations of WE and ML models on the different
datasets, i.e., all the possible combinations of the three requirement
specifications considered (CPN, GPS, ePurse, CPN & GPS, GPS &
ePurse, CPN & ePurse, CPN & GPS & ePurse), to answer RQSec1.
We apply 10-fold cross-validation, and then we calculate the average
Accuracy and F1-score to catch the most promising combination.
Note that we consider only these 2 metrics because in the first part
of the assessment we are interested in the general performance of
the models, that can be resumed in Accuracy and F1-Score, while
specific metrics like Recall or Precision will be considered in the
later steps. Based on our result, the best combination is Word2Vec as
word embedding technique and NuSVC as ML algorithm, reaching
0.84 in terms of Accuracy and F1-Score. Since the first part of the
experiment only gives an overview of the possible best combination,
we carried out more in-depth experiments both via GridSearchCV, to
identify the best hyperparameters for the best combination identified,
i.e. Word2Vec and NuSVC, and via Ensemble Learning techniques,
with the aim of filling in the model’s deficiencies on certain datasets
by exploiting the learning of other algorithms. Table 5.4 presents the
results obtained through GridSearchCV.

In this experiment, the nu parameter is tested at five levels: 0.1, 0.3,
0.5, 0.7, and 0.9, which determines the upper bound on the fraction
of margin errors and the lower bound of the fraction of support
vectors. Four types of kernels are explored: linear, polynomial, radial
basis function (rbf), and sigmoid. For polynomial kernels, three
degrees are considered: 2, 3, and 4. The gamma parameter, which
defines the influence of a single training example, is set to either scale
or auto, with additional specific values of 0.001, 0.01, 0.1, and 1.0,
providing a range of options for fine-tuning the model’s complexity
and capability to handle data of varying scales and distributions.

96 beyond domain dependency in security requirements identification

Notably, the average outcomes are generally lower than those
achieved in the initial experiment, recording a 0.78 in F1-score.

The results in Table 5.5 demonstrate the performance of ensemble
learning strategies (Hard Voting, Hard Bagging, and Stacking) in
detecting security requirements for the various datasets combinations.
The performance varies across different datasets, even though the
Stacking strategy consistently outperforms other strategies in terms
of F1-score, demonstrating higher Precision and Recall compared to
the other strategies.

5.3.1.1 Discussion

The experiment carried above reveals that the most promising ML
algorithm is the NuSVC, independently from the WE technique,
reaching over 0.80 in Accuracy and F1-score with 3 WE out of 5,
highlighting its potential in this task. However, Lazy Predict is a
valuable tool for quick model evaluation and selection, especially in
the early stages of an ML project. This means it should be viewed
as a starting point, and more in-depth, customized modeling and
feature engineering are often required for optimal performance on
real-world datasets. Indeed, we can already observe a substantial
difference in the results we get into the GridSearchCV experiment,
which leads our combination of W2V and NuSVC to earn an average
mark of 0.78 in terms of F1-score.

Table 5.3: Results obtained by the built combinations of word-embedder
and ML models on the different datasets, for the inter-domain
security requirements.
NuSVC = Nu-Support Vector Classification; LR = Linear Regres-
sion; RidgeCV = Ridge regression with built-in Cross-Validation;
LGBM = Light Gradient Boosting Machine; XGB = eXtreme Gra-
dient Boosting; ET = Extra Trees; SVC = Support Vector Classifi-
cation.

Word2Vec BERT TF-IDF FastText GloVe
Model Acc F1 Model Acc F1 Model Acc F1 Model Acc F1 Model Acc F1

NuSVC 0.84 0.84 LGBM 0.70 0.68 ET 0.82 0.82 NuSVC 0.81 0.80 NuSVC 0.83 0.82

LR 0.82 0.83 XGB 0.68 0.67 NuSVC 0.81 0.81 SVC 0.81 0.79 SVC 0.81 0.80

RidgeCV 0.82 0.82 ET 0.69 0.67 RidgeCV 0.81 0.80 RidgeCV 0.78 0.78 RidgeCV 0.80 0.80

5.3 results and discussion 97

Table 5.4: Results from GridSearchCV on the combination Word2Vec and
NuSVC.

Dataset Precision Recall F1-score

CPN 0.86 0.85 0.84

GPS 0.85 0.82 0.83

ePurse 0.82 0.78 0.78

CPN & GPS 0.83 0.81 0.81

GPS & ePurse 0.79 0.75 0.74

CPN & ePurse 0.73 0.72 0.71

CPN & GPS & ePurse 0.80 0.78 0.78

Overall 0.81 0.79 0.78

This difference arises because, in the first experiment, the model
operates with default hyperparameters. In contrast, GridSearchCV ex-
plores a predefined set of hyperparameter combinations, which, if not
well-defined or excessively broad, may include suboptimal choices
affecting model performance. Moreover, the model’s performance
can vary due to the specific data it’s trained on, and GridSearchCV,
by design, tests the model with diverse data subsets during cross-
validation. Consequently, one set of hyperparameters may excel on
one fold while another works better on a different one, leading to
inconsistent results.

The surprising performance of the Word2Vec and NuSVC combina-
tion observed in the Lazy Predict library, compared to the traditional
GridSearchCV implementation, can be attributed to multiple factors.
One explanation is that Lazy Predict provides an efficient, automated
method for evaluating a broad range of ML models with diverse
hyperparameters without the need for extensive manual tuning.

This “lazy” approach might serendipitously discover an optimal
combination that might not be immediately evident in a structured
grid search. Additionally, Word2Vec embeddings capture seman-
tic information, while NuSVC, equipped with a nu-parameter, can
effectively handle data with intricate decision boundaries.

98 beyond domain dependency in security requirements identification

Table 5.5: Results from Ensemble on the combination Word2Vec and NuSVC,
Logistic Regression, and Ridge Classifier CV.

Dataset Strategy Precision Recall F1-score

CPN
Hard Voting 0.73 0.83 0.76

Hard Bagging 0.78 0.83 0.78

Stacking 0.92 0.90 0.90

GPS
Hard Voting 0.84 0.81 0.81

Hard Bagging 0.79 0.78 0.77

Stacking 0.87 0.83 0.84

ePurse
Hard Voting 0.77 0.73 0.69

Hard Bagging 0.69 0.71 0.66

Stacking 0.78 0.76 0.75

CPN & GPS
Hard Voting 0.83 0.83 0.82

Hard Bagging 0.83 0.83 0.82

Stacking 0.87 0.85 0.86

GPS & ePurse
Hard Voting 0.81 0.80 0.77

Hard Bagging 0.83 0.82 0.82

Stacking 0.82 0.77 0.77

CPN & ePurse
Hard Voting 0.79 0.78 0.77

Hard Bagging 0.79 0.77 0.76

Stacking 0.82 0.80 0.80

CPN & GPS & ePurse
Hard Voting 0.84 0.83 0.83

Hard Bagging 0.83 0.82 0.81

Stacking 0.83 0.81 0.82

Overall
Hard Voting 0.80 0.80 0.78

Hard Bagging 0.82 0.80 0.79

Stacking 0.84 0.82 0.82

The Lazy Predict library could have identified an ideal configuration
during its automated model selection process that aligns well with
the unique characteristics of Word2Vec embeddings. Nonetheless,
it is crucial to acknowledge that the specific dataset may influence
the observed behavior, and results should be interpreted judiciously.
Indeed, by looking at Table 5.4, the performances are lower whenever
we introduce ePurse requirements, leading the W2V and NuSVC
combination never to overcome the 0.8 in F1-score.

5.3 results and discussion 99

For this reason, we search for an ensemble approach of ML algo-
rithms, intending to fill the difficulties of NuSVC to catch security
requirements from a particular domain correctly. Of the tested strate-
gies, Stacking is the one that outperforms the others in Precision,
Recall, and F1-Score. Even though we do not improve the perfor-
mance on the specific ePurse dataset, where performance is even
weaker than the Grid Search approach, on the 3 combinations of
datasets including ePurse, i.e., GPS & ePurse, CPN & ePurse, and
CPN & GPS & ePurse, the performance improved of 0.3, 0.9, and 0.4,
respectively.

In summary, the results achieved allow to answer our first RQ:

Stacking is a powerful ensemble learning strategy for intra-
domain security requirements detection, offering a bal-
anced trade-off between Precision and Recall. By exploiting
Word2Vec, the solution based on stacking NuSVC, Logistic
Regression, and Ridge Classifier CV allows to obtain 0.82 in
terms of F1-score, with a peak of 0.84 in terms of Precision.

Table 5.6: Results in terms of Precision, Recall, and F1-score achieved with
Ensemble on the combination Word2Vec and NuSVC, Logistic
Regression, and Ridge Classifier CV, compared with the results
obtained by Li and Chen [117].

Stacking Li and Chen [117]

Dataset Precision Recall F1-score Precision Recall F1-score

CPN 0.92 0.90 0.90 0.78 0.71 0.74

GPS 0.87 0.83 0.84 0.76 0.70 0.73

ePurse 0.78 0.76 0.75 0.90 0.80 0.85

CPN & GPS 0.87 0.85 0.86 0.72 0.72 0.72

GPS & ePurse 0.82 0.77 0.77 0.85 0.80 0.83

CPN & ePurse 0.82 0.80 0.80 0.82 0.76 0.79

CPN & GPS & ePurse 0.83 0.81 0.82 0.80 0.80 0.80

Overall 0.84 0.82 0.82 0.80 0.76 0.78

Table 5.6 compares the performance of two different approaches:
one approach is an ensemble method combining Word2Vec with

100 beyond domain dependency in security requirements identification

NuSVC, Logistic Regression, and Ridge Classifier CV (referred to as
“Stacking” in the table). The other is a method reported by Li and
Chen [117], as referenced in the table. We select this as the baseline
for comparison because the authors achieved the best performance
in identifying security requirements in these experiments.

Considering the overall performances, the ensemble approach
(“Stacking”) outperforms the method by Li et al. across all three
metrics. The ensemble has an overall Precision of 0.84, Recall of 0.82,
and F1-score of 0.82, which are higher than Li et al.’s Precision of 0.80,
Recall of 0.76, and F1-score of 0.78.

By looking at the performance by datasets, the ensemble method
generally achieves better Precision, Recall, and F1-scores than the
method by Li et al. that performs better on the ePurse and GPS
& ePurse datasets. For the ePurse dataset, Li et al.’s method has a
Precision of 0.90, which is substantially higher than the ensemble’s
0.78. Similarly, the Recall is better by 0.04, and the F1-score is better
by 0.10. In terms of standard deviation, Li et al.’s method shows less
variability in performance across different datasets. For example, its
F1-scores range from 0.73 to 0.85. In contrast, the ensemble method
varies more, with F1-scores ranging from 0.75 to 0.90, indicating that
it may be more sensitive to the characteristics of the specific datasets.

In summary, the ensemble method generally shows superior re-
sults, especially in overall metrics, while the method by Li et al.
outperforms the ensemble when using the ePurse dataset or its com-
bination with GPS, suggesting that the ontology-based solution still
provides better performance in singular cases.

5.3.2 RQSec2 How effectively can shallow machine learning algorithms,
based on word embeddings, identify security-related requirements
coming from different domains?

Table 5.7 displays the best results achieved by the 150 combinations
of WE and ML models in the inter-domain experiment to address
RQSec2. Word2Vec (W2V) as the WE technique and Passive Aggres-
sive Classifier (PAC) as the ML algorithm delivered the highest
performance, achieving an Accuracy and F1-Score of 0.66.

5.3 results and discussion 101

Then, we conduct detailed experiments through GridSearchCV to
identify the optimal hyperparameters for the top combination, i.e.,
Word2Vec and PAC, and we explore ensemble learning techniques to
address specific dataset challenges by leveraging the knowledge of
other combination.

Table 5.7: Results obtained by the built combinations of word-embedder and
ML models on the different datasets, for the intra-domain security
requirements. PAC = Passive Aggressive Classifier; LSVC = Linear
SVC; LP = Label Propagation; LS = Label Spreading; LDA =
Linear Discriminant Analysis; QDA = Quadratic Discriminant
Analysis

Word2Vec BERT TF-IDF FastText GloVe
Model Acc F1 Model Acc F1 Model Acc F1 Model Acc F1 Model Acc F1

PAC 0.66 0.66 LP 0.62 0.60 LDA 0.52 0.52 Perceptron 0.57 0.56 LR 0.61 0.60

Perceptron 0.65 0.65 LS 0.62 0.60 QDA 0.55 0.52 PAC 0.56 0.56 PAC 0.59 0.60

LSVC 0.65 0.65 Bagging 0.54 0.54 Ridge 0.51 0.51 LSVC 0.56 0.55 Perceptron 0.59 0.60

Table 5.8: Results from GridSearchCV on the combination Word2Vec and
PAC.

Train set (Test set) Precision Recall F1-score

CPN (GPS) 0.72 0.72 0.70

CPN (ePurse) 0.71 0.44 0.39

ePurse (CPN) 0.66 0.61 0.63

ePurse (GPS) 0.77 0.51 0.46

GPS (ePurse) 0.72 0.73 0.71

GPS (CPN) 0.81 0.63 0.66

CPN & ePurse (GPS) 0.74 0.44 0.34

CPN & GPS (ePurse) 0.71 0.60 0.61

GPS & ePurse (CPN) 0.76 0.71 0.73

Overall 0.73 0.64 0.64

102 beyond domain dependency in security requirements identification

Table 5.9: Results from Ensemble on the combination Word2Vec and PAC,
Linear SVC, and Perceptron.

Train set (Test set) Strategy Precision Recall F1-score

CPN (GPS)
Hard Voting 0.67 0.68 0.61

Stacking 0.71 0.68 0.61

CPN (ePurse)
Hard Voting 0.68 0.43 0.37

Stacking 0.44 0.33 0.19

ePurse (CPN)
Hard Voting 0.66 0.45 0.50

Stacking 0.04 0.21 0.07

ePurse (GPS)
Hard Voting 0.76 0.65 0.55

Stacking 0.64 0.53 0.49

GPS (ePurse)
Hard Voting 0.71 0.62 0.63

Stacking 0.69 0.70 0.69

GPS (CPN)
Hard Voting 0.80 0.69 0.71

Stacking 0.80 0.77 0.78

CPN & ePurse (GPS)
Hard Voting 0.77 0.77 0.77

Stacking 0.41 0.64 0.50

CPN & GPS (ePurse)
Hard Voting 0.74 0.53 0.52

Stacking 0.74 0.52 0.51

GPS & ePurse (CPN)
Hard Voting 0.79 0.63 0.66

Stacking 0.60 0.48 0.53

Overall
Hard Voting 0.72 0.60 0.60

Stacking 0.61 0.56 0.56

Table 5.8 displays the results obtained from GridSearchCV for the
Word2Vec and passive aggressive combination. In our experiment, the
parameter grid for model tuning consists of several hyperparameters
aimed at optimizing the performance of PAC. The regularization
parameter C is evaluated at three levels: 0.1, 1.0, and 10.0, to adjust
the strength of regularization and prevent overfitting. The maximum
number of iterations to run the optimization algorithm is set at 100,
500, and 1000 to control computational intensity and convergence.
The tolerance for stopping criteria is tested at three fine granularities:
0.001, 0.0001, and 0.00001, to determine the precision of the solution.
Three fractions of the training data, 0.1, 0.2, and 0.3, are considered
for validation to aid early stopping, which helps prevent overfitting
by halting training when validation scores do not improve. Two
types of loss functions, hinge and squared hinge, are used to see their

5.3 results and discussion 103

impact on the learning algorithm. Finally, the grid includes three
values for n_iter_no_change: 5, 10, and 20, to specify the number of
consecutive iterations without improvement after which training will
stop, optimizing computational resources and potentially improving
generalization. Even though the performance are lower with respect
to the first experiment (the same happen for RQSec1), the combination
still present interesting results, achieving 0.64 in F1-score.

Results in Table 5.9 demonstrate the performance of ensemble
learning strategies (Hard Voting and Stacking) in this task. We do
not evaluate the hard bagging because it is not possible to set up it
with PAC and Perceptron, since these ML solutions do not provide a
method to predict probabilities, affecting their adaptability in more
complex ensemble scenarios that might require such functionality. We
can observe that the performance varies across datasets, with Hard
Voting outperforming the other strategies reaching 0.72 in Precision,
but presenting lower performances in terms of Recall and F1-score.

5.3.2.1 Discussion

The results show that Word2Vec paired with the PAC outperforms
other combinations, achieving the highest accuracy and F1-score
of 0.66. Other embeddings such as BERT embeddings, which are
expected to be strong given their deep contextual representation,
do not outperform Word2Vec when used with the models in the
experiment, achieving an Accuracy and F1-score up to 0.62 only.

FastText and GloVe embeddings show lower performance in combi-
nation with the tested ML models. This suggests that for the specific
task of identifying security-related requirements, these embeddings
are less effective than Word2Vec in the tested combinations. Tradi-
tional frequency-based methods like TF-IDF lag behind sophisticated
embeddings, suggesting that the complexity of security-related lan-
guage requires more nuanced semantic representations.

Linear models like PAC, Perceptron, and LSVC are notable for
their robust performance across different embeddings, potentially
indicating the presence of linearly separable features in the domain.

From Table 5.8, which presents the results from a GridSearchCV
experiment using Word2Vec embeddings with a PAC, we can observe

104 beyond domain dependency in security requirements identification

varying levels of generalization capability when models trained on
one dataset are tested on another. For instance, the model trained on
CPN and tested on GPS performs reasonably well with an F1-score
of 0.70, while the same model tested on ePurse drops significantly in
performance, with an F1-score of 0.39.

Models trained on combined datasets (e.g., CPN & ePurse, CPN &
GPS) do not necessarily outperform those trained on single datasets
when tested on a third dataset. For example, the combination of CPN
& ePurse tested on GPS shows an F1-score of 0.34, which is lower
than the single dataset scenario of CPN (GPS) with an F1-score of
0.70. Considering all the cases, the overall Precision is 0.73, the Recall
is 0.64, and the F1-score is 0.64. This indicates that the approach
has a moderate level of accuracy and a relatively consistent balance
between Precision and Recall. However, the overall F1-score points
to limitations in the model’s ability to generalize across different
domains. Notably, certain dataset pairs like GPS (ePurse) and GPS
& ePurse (CPN) exhibit better generalization, with F1-scores of 0.71

and 0.73, respectively, indicating shared or similar characteristics
between these domains that the models are able to latch onto. The
best individual performance comes from the model trained on GPS
& ePurse and tested on CPN, with Precision, Recall, and F1-score of
0.76, 0.71, and 0.73, respectively. This could imply that GPS domain
contains features that are more universally applicable or that the
CPN test set has characteristics that are easier to predict.

Furthermore, in Table 5.9 we look at the performance of ensemble
techniques using a combination of Word2Vec with PAC, Linear SVC,
and Perceptron. The combination of CPN for training and GPS for
testing shows similar F1-scores for both Hard Voting and Stacking
strategies, even though Stacking has a slightly higher Precision but
equal Recall. For CPN (ePurse), Hard Voting substantially outper-
forms Stacking on all metrics. Stacking’s F1-score of 0.19 suggests
significant issues with generalizing from CPN to ePurse. ePurse
(CPN) results are notably poor for the Stacking strategy, with preci-
sion falling to 0.04, indicating that the Stacking model is particularly
challenged when applying ePurse-trained models to the CPN do-
main. The ePurse (GPS) and GPS (ePurse) combinations also reflect
better performance with Hard Voting, with a notable drop in F1-

5.3 results and discussion 105

score for Stacking when ePurse is the training set. A notable result is
the GPS (CPN) combination, where Stacking equals Hard Voting in
Precision and outperforms in Recall and F1-score. When combining
CPN and ePurse as a training set for the GPS test set, Hard Voting
is significantly more effective than Stacking, reflected by a F1-score
difference of 0.27. For the combined training sets (CPN & GPS for
ePurse, and GPS & ePurse for CPN), Hard Voting consistently out-
performs Stacking in terms of F1-score. On aggregate, Hard Voting
has higher Precision, Recall, and F1-score than Stacking, with 0.72,
0.60, and 0.60 respectively, compared to 0.61, 0.56, and 0.56 for Stack-
ing. This suggests that, in general, Hard Voting is a more reliable
ensemble strategy for cross-domain security requirement identifica-
tion and that there are significant challenges when models trained
on one dataset are tested on another, particularly with the Stacking
strategy. This might indicate that the features or patterns learned are
not sufficiently universal or are too specific to the training domain.

The data from Tables 5.8 and 5.9 show that performance signif-
icantly fluctuates when models are applied to domains they were
not trained on, indicating challenges in generalizability. Ensemble
methods, including Hard Voting and Stacking, do not consistently
outperform the individual classifiers. In particular, Stacking and Hard
Voting often result in lower overall performance metrics compared
to 0.64 from the single classifier approach. The composition of the
training set plays a critical role in the effectiveness of the model on
the test set, yet the addition of multiple domains into the training set
does not guarantee improved results. For example, models trained
on CPN & ePurse and tested on GPS show a dip in F1-score when
using a stacking ensemble approach. In conclusion, while there are
instances where the models trained on one domain can reasonably
perform in another, the overall results suggest that WE-based shallow
ML algorithms struggle with cross-domain identification of security-
related requirements, as reflected by the variability and generally
moderate to low F1-scores across different domain combinations. En-
semble methods do not always result in performance improvements
and may require careful tuning to the specific characteristics of the
combined domains to optimize results.

In summary, the results achieved allow to answer our second RQ:

106 beyond domain dependency in security requirements identification

Optimizing the hyperparameters for the Word2Vec and Pas-
sive Aggressive classifier combination is the most effective
approach for detecting inter-domain security requirements,
striking a peak of 0.73 in Precision and holding a 0.64 as Recall
and F1-score.

Table 5.10: Results in terms of Precision, Recall, and F1-score achieved with
GridSearchCV on the combination Word2Vec and PAC compared
with the results obtained by Li and Chen [117]

GridSearchCV

W2V & PAC
Li and Chen [117]

Dataset Precision Recall F1-score Precision Recall F1-score

CPN (GPS) 0.72 0.72 0.70 0.57 0.56 0.57

CPN (ePurse) 0.71 0.44 0.39 0.67 0.60 0.63

ePurse (CPN) 0.66 0.61 0.63 0.98 0.49 0.66

ePurse (GPS) 0.77 0.51 0.46 0.85 0.17 0.29

GPS (ePurse) 0.72 0.73 0.71 0.97 0.76 0.85

GPS (CPN) 0.81 0.63 0.66 0.66 0.76 0.70

CPN & ePurse (GPS) 0.74 0.44 0.34 0.54 0.48 0.50

CPN & GPS (ePurse) 0.71 0.60 0.61 0.57 0.71 0.63

GPS & ePurse (CPN) 0.76 0.71 0.73 0.98 0.73 0.84

Overall 0.73 0.64 0.64 0.75 0.58 0.63

Table 5.10 compares the performance using GridSearchCV with
Word2Vec and PAC (W2V & PAC) against the results obtained by Li
and Chen [117]. W2V & PAC shows stronger performance in terms
of Precision in most dataset combinations compared to Li et al.’s
method. This is particularly evident in CPN (GPS), CPN (ePurse),
and CPN & ePurse (GPS). In terms of Recall and F1-score, Li et
al.’s method outperforms W2V & PAC in several combinations, such
as CPN (ePurse), ePurse (CPN), GPS (ePurse), and CPN & GPS
(ePurse). This suggests that while the method W2V & PAC may be
more precise in its predictions, Li et al.’s method might be better at
capturing relevant cases (higher Recall).

Nevertheless, both methods exhibit variability across different
dataset combinations. The method W2V & PAC generally maintains
a balanced trade-off between Precision and Recall across different

5.3 results and discussion 107

dataset combinations, as indicated by its performance metrics. No-
tably, the method W2V & PAC has an overall precision of 0.73 and
F1-score of 0.64, which is comparable to the F1-score of Li et al. (0.63).

However, Li et al.’s method has a slightly higher overall Precision
(0.75) but lower Recall (0.58), that is in contrast with the analysis
reported before, in which our combination seems to have a better
Precision (5 case out of 9) but worse Recall (6 case out of 9) when
compared with Li and Chen [117].

In conclusion, although the W2V & PAC method demonstrates
strong Precision in many cases, Li et al.’s method occasionally sur-
passes it in Recall and F1-score. This highlights the complexity and
context-dependent nature of requirements, influencing the selection
of the suitable approach for inter-domain identification of security-
related requirements, despite the results favoring W2V & PAC.

5.3.3 RQSec3 How effective can pre-training context in BERT transform-
ers be on the detection of security-related requirements?

Table 5.11 presents the results from different pre-training setups of
BERT models to detect security requirements. The results include
Precision, Recall, and F1-score for different models trained on specific
datasets and tested on both TestData and the Promiseexp dataset. The
models evaluated are BERT, CweCveBERT, CodeBERT, and CweCve-
CodeBERT, already detailed in Section 5.2.1.

Table 5.11: Results from different pre-training setups of BERT to detect
security requirements.

Model Test set Precision Recall F1-score

BERT
TestData 0.62 0.79 0.69

Promiseexp 0.69 0.71 0.70

CweCveBERT
TestData 0.44 0.68 0.53

Promiseexp 0.69 0.56 0.62

CodeBERT
TestData 0.59 0.72 0.65

Promiseexp 0.75 0.76 0.76

CweCveCodeBERT
TestData 0.50 0.72 0.59

Promiseexp 0.69 0.82 0.75

108 beyond domain dependency in security requirements identification

For BERT, testing on the Promiseexp dataset yields similar results
in terms of Precision, Recall, and F1-score compared to the results on
TestData dataset. In comparison, CweCveCodeBERT and CodeBERT
exhibit strong performance when tested on Promiseexp, but lower on
TestData. Table 5.12 presents the inference performances of pre-trained
BERT models on industrial specifications. The models evaluated are
BERT, CodeBERT, and CweCveCodeBERT, and their performance
metrics include Precision, Recall, and F1-score for various test sets
(CPN, ePurse, GPS, and average across all sets).

Table 5.12: Inference performances of pre-trained BERT models on the in-
dustrial specifications.

BERT CodeBERT CweCveCodeBERT
Test set Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

CPN 0.76 0.77 0.76 0.78 0.78 0.78 0.80 0.78 0.79
ePurse 0.81 0.53 0.50 0.82 0.61 0.61 0.82 0.62 0.62
GPS 0.79 0.76 0.76 0.78 0.76 0.76 0.79 0.76 0.76
Average 0.79 0.69 0.67 0.79 0.72 0.72 0.80 0.72 0.72

Table 5.13: McNemar test results.

Dataset
BERT

vs

CodeBERT

BERT

vs

CweCveCodeBERT

CodeBERT

vs

CweCveCodeBERT

CPN 0.228 0.006 0.096

ePurse 0.034 0.010 1

GPS 0.724 1 0.683

CweCveCodeBERT and CodeBERT consistently outperform BERT
on all test sets out of GPS, achieving higher Precision, Recall, and
F1-score. The average performance across all test sets is best for
CweCveCodeBERT, even though there is not that big difference with
respect to CodeBERT. Table 5.13 presents the results of the McNemar
test comparing the performance of BERT, CodeBERT, and CweCve-
CodeBERT on the CPN, ePurse, and GPS datasets. In the comparison
between BERT and CodeBERT, CweCveCodeBERT shows a signifi-
cant improvement on the CPN and ePurse dataset with a very low
p-value, indicating its superior performance. As expected, for the
GPS dataset, CweCveCodeBERT performs on par with CodeBERT,
suggesting that both models are effective in this context.

5.3 results and discussion 109

5.3.3.1 Discussion

Our analysis reveal that standard BERT demonstrated robust perfor-
mance, achieving the highest F1-score of 0.69 on TrainData (TestData)
and maintaining a similar F1-score of 0.70 on Promiseexp. This con-
sistency suggests that BERT possesses a commendable ability to
generalize across diverse contexts. CweCveBERT, tailored for CWE
and CVE data, exhibited a lower F1-score of 0.53 on TestData, slightly
improving to 0.62 on Promiseexp, implying a potential limitation in
its adaptability to varying data domains. CodeBERT, with its em-
phasis on code-centered pre-training, shows moderate performance
on TestData (F1-score of 0.65) but excellent on Promiseexp with an
F1-score of 0.76.

This superior performance underlines the relevance of its pre-
training context for the Promiseexp dataset. CweCveCodeBERT, amal-
gamating features of both CWE/CVE and code-related data, shows
balanced efficacy across TestData and Promiseexp, reaching an F1-score
of 0.75 on the latter. This indicates that hybrid pre-training approach
can yield models with broader applicability for security detection.

Following these findings, we extended our examination to the
inference capabilities of the top-performing BERT models (BERT,
CodeBERT, and CweCveCodeBERT) across diverse industrial datasets
(CPN, ePurse, GPS), as presented in Table 5.12. CweCveCodeBERT
consistently outperformed the others, especially in Precision and
F1-score, across all datasets. Its superior performance, particularly on
the CPN dataset, suggests an effective alignment of its pre-training
context with the dataset’s characteristics. However, a noticeable de-
crease in Recall was observed across all models on the ePurse dataset,
implying a potential challenge in capturing all relevant cases. The
GPS dataset saw similar performance levels across all models, indi-
cating a uniform handling of the dataset’s features by the models.
While CweCveCodeBERT slightly led in overall metrics, the marginal
difference compared to CodeBERT and BERT indicates a general
effectiveness of all three models for these industrial specifications.

To rigorously assess the statistical significance of the performance
differences among these models, we applied the McNemar test with
a Bonferroni correction, as shown in Table 5.13.

110 beyond domain dependency in security requirements identification

This correction was crucial to mitigate Type I errors due to multiple
comparisons. The test results suggest significant differences between
BERT and CweCveCodeBERT on the CPN and ePurse datasets, un-
derscoring CweCveCodeBERT’s superior performance. However, no
statistically significant differences can be observed between Code-
BERT and CweCveCodeBERT across the datasets, suggesting com-
parable effectiveness. The significant difference between BERT and
CodeBERT on ePurse, with a p-value of 0.034, calls for cautious
interpretation due to its proximity to the adjusted threshold.

In summary, the results achieved allow to answer our RQSec3:

The introduction of CodeBERT and CweCveCodeBERT, with
their unique pretraining on code and/or security descriptions,
showcase the models’s superior performance and domain inde-
pendence, marking, in the case of CweCveCodeBERT, a signifi-
cant advancement in identifying security-related requirements
when compared to the standard BERT model.

Table 5.14: Results in terms of Precision, Recall, and F1-score achieved with
CweCveCodeBERT compared with the results of Mohamad et al.
[151] and Munaiah, Meneely, and Murukannaiah [154]

CweCveCodeBERT Mohamad et al. [151] Munaiah, Meneely, and Murukannaiah [154]

Dataset Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

CPN 0.80 0.78 0.79 0.53 0.71 0.61 0.73 0.80 0.74

ePurse 0.82 0.62 0.62 0.95 0.68 0.79 0.61 0.65 0.61

GPS 0.79 0.76 0.76 0.63 0.81 0.71 0.68 0.67 0.68

Average 0.80 0.72 0.72 0.70 0.73 0.70 0.67 0.71 0.68

Table 5.14 compares the performance of CweCveCodeBERT with
two other models from previous researches (Mohamad’s approach
using TF-IDF, SMOTE, and Random Forest, and Munaiah’s approach
using a One-Class SVM trained on CWE descriptions) in terms of
Precision, Recall, and F1-score across various datasets. CweCveCode-
BERT generally shows the highest average Precision and F1-score
across all datasets, indicating its strong ability to correctly identify
and confirm relevant cases.

5.3 results and discussion 111

However, it has a slightly lower average Recall compared to Mo-
hamad’s approach, suggesting it may miss some relevant cases that
Mohamad’s model catches.

In particular, on the CPN dataset, CweCveCodeBERT outperforms
the other models in terms of Precision and F1-score, but Munaiah’s
model has a higher Recall. For the ePurse dataset, Mohamad’s ap-
proach shows significantly better performance, suggesting that for
this particular dataset, their method might be more effective. On
the GPS dataset, CweCveCodeBERT leads in terms of Precision and
F1-score, while presenting a lower Recall compared to Mohamad’s
solution. Munaiah’s One-Class SVM model shows moderate perfor-
mance across all metrics. It appears to be more balanced but does
not excel in any specific area compared to the other models.

Clearly, implementing CweCveCodeBERT may require more com-
putational resources and expertise in BERT models and NLP, but
it offers a high degree of Precision and overall F1-score, making
it a strong candidate for practical applications where accuracy is
paramount. Mohamad’s approach, while less precise, might be easier
to implement due to the traditional ML pipeline involving TF-IDF
and Random Forest.

It could be suitable for scenarios where maximizing Recall is more
important, but this implies the availability of numerous requirements
to obtain the importance of security-related terms with TF-IDF. Muna-
iah’s One-Class SVM approach might offer a simpler implementation
with moderate performance, potentially serving well in scenarios
where a balance between precision and recall is needed.

Ultimately, CweCveCodeBERT’s robust performance across diverse
datasets underscores its suitability as an inter-domain model. Its ca-
pacity to adapt to various contexts while maintaining high Precision
and F1-scores highlights its versatility, making it an effective tool
for detecting security-related requirements without dependence on
specific application domains.

112 beyond domain dependency in security requirements identification

5.3.4 Implications

As we delve into the intricacies of our research findings, it becomes
increasingly evident that the realm of security requirement detection
in software engineering is multifaceted, with varying approaches
suited to different scenarios and resource availabilities.

In addressing RQSec1, our investigation sheds light on the applica-
bility and effectiveness of ensemble methods for engineers working
within established domains. These methods, known for their min-
imal resource and effort demands, exhibit a notable capability in
identifying whether new requirements in ongoing projects pertain
to security, offering a streamlined, resource efficient approach for
projects with well defined security requirements, allowing for swift
and effective classification within known parameters. For researchers,
the success of embedding techniques such as Word2Vec and GloVe in
recognizing security requirements suggests the need for further inves-
tigation into which features of these embeddings most contribute to
classification accuracy. Additionally, studying dataset characteristics
that influence model performance could lead to the development of
more robust and adaptable models.

For practitioners, the effective combinations of embedding tech-
niques and ML algorithms identified can be directly applied in
development environments to automate security requirement identi-
fication, thus saving time and reducing errors in manual processes.
This approach allows practitioners to tailor ML methods to the spe-
cific characteristics of their project’s domain, enhancing the precision
of requirement detection and integrating these ML techniques into
tools to maintain high security in software projects.

Conversely, RQSec2 findings reveal a contrasting landscape. Here,
practitioners tasked with understanding the security implications
of requirements for new projects, especially those diverging from
previously encountered domains, must navigate more complex wa-
ters. Customized solutions become paramount in these scenarios, as
the characteristics and nuances of security requirements can signifi-
cantly vary across different domains. Such an approach necessitates
a deeper, more tailored analysis, acknowledging the distinctiveness
of each domain.

5.3 results and discussion 113

Thus, practitioners should be cautious in using models trained on
specific domain data without adjustments and evaluate the domain
adaptability of each model before deployment. The development of
domain-agnostic tools that leverage adaptable models could reduce
the need for multiple specialized tools, ensuring broader applicability.
On the other hand, researchers are encouraged to explore models
that can adapt to varying contexts without retraining, potentially
through meta-learning approaches or transfer learning strategies to
improve generalization capabilities.

RQSec3 brings us to the cutting edge of our exploration, showcasing
the potential of transformer architectures in building inter-domain
models. For practitioners equipped with adequate resources, these
models emerge as powerful tools that surpass the constraints outlined
in RQSec2. By leveraging the advanced capabilities of transformer
architectures, practitioners can develop models that maintain high
accuracy and adaptability across various domains, mitigating the
need for inter-domain customization.

Moreover, integrating pre-trained BERT models into development
pipelines could enhance the detection and categorization of security
requirements, improving the early phases of software development
and ensuring compliance with security standards. These models’
adaptability to specific security contexts could also be used to develop
customized solutions for industries with stringent security needs,
such as finance and healthcare. For the researchers, the success of pre-
trained BERT models in inter-domain tuning opens up new research
avenues, including the fine-tuning of language models for specialized
applications that could extend beyond security to other types of non-
functional requirements. Further comparative analysis of different
pre-training corpora and their impacts on model performance in
specific application contexts could be beneficial.

In conclusion, for the research community, our findings offer a
foundational step towards achieving domain independence in de-
tecting security requirements. The pursuit of this independence is
challenging, thus the question:

To what extent can we truly achieve domain-agnostic models in
the field of security requirement detection?

114 beyond domain dependency in security requirements identification

This inquiry not only opens new avenues for research but also
beckons a deeper understanding of the interplay between machine
learning techniques and the multifarious nature of security require-
ments across diverse domains.

5.4 threats to validity

This section elaborates on the threats to the validity of the performed
study, which stem from the generalizability and repeatability of the
presented results and the correctness of the used tools.

Construct Validity. It involves determining how well a test mea-
sures the concept it evaluates by checking the adequacy of observa-
tions and inferences based on the measurements performed during
the study [28]. It is critical in establishing the overall validity of
a method. In our context, methods offered by the Scikit-learn li-
brary have been used for the evaluation. In particular, we used the
accuracy_score6 method to measure Accuracy, the precision_score7

method to measure Precision, the recall_score8 method to measure
Recall, and the f1_score9 method to measure F1-score.

As much as relying on the results of a single tool may pose a
threat to validity, especially in the case of deep learning applications,
since these metrics can be calculated mathematically, they should
not be tool-dependent. Furthermore, we apply these metrics because
they have been used in previous studies that analyzed approaches
to detect security requirements, and this allows the results obtained
here to be compared with those obtained in previous studies.

Internal Validity. It refers to the validity of results by considering
causality between action taken and the resulting change that can
be observed [28]. In our study for exploring the applicability of
our models to detect security-related aspects, we assume that these

6 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.

html

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_

score.html

8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.

html

9 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

5.4 threats to validity 115

models are comparable to each other, as they come from the same
libraries, i.e., Scikit-learn and Transformers10. Causality could be a
threat to the internal validity of our study. However, the statistical test
results show that the measurements were significant, implying that
the correlations found derive from fairly strong causal relationships
and reinforcing the idea that the conditions for causality in the
approach are met.

External Validity. It concerns the generalizability and repeatability
of the produced results [28] and, therefore, the usefulness of the
results of a research study, i.e., is the researchers’ results applicable
in a real-world context?

Our approach is based on Python since the developed models
have been implemented with the libraries available in this program-
ming language. As far as we know, the library can be used only in
Python, so the reproducibility of the BERT-based models in other
programming languages has not been studied in terms of feasibil-
ity. To demonstrate the generalizability of our work, we apply a
k-fold cross-validation technique where possible, showing that the
approach does not depend on the data used for training. In addition,
the datasets are software specifications from different application
domains, which corroborates the result of our study, demonstrating
applicability in industrial environments. To promote the replication
of this work, we made all the tools, scripts, and data available [6].

Conclusion Validity. It refers to the degree of reasonableness or
correctness of conclusions regarding the defined null hypothesis and
the performed statistical tests [28]. We consider McNemar’s test to
compare the performances of two models because it has a lower
probability of error and makes fewer assumptions. When declaring
that one model performs better than another, we consider accepting
a probability of 5% of committing a Type-I-Error [232]. Thus, when
null hypotheses are rejected, we consider the relationship between
data and result to be reasonable.

10 https://huggingface.co/docs/transformers/main/en/index#transformers

https://huggingface.co/docs/transformers/main/en/index#transformers

6
A F I R S T E Y E O N T H E I M PA C T O F Q UA N T U M
N AT U R A L L A N G UA G E R E P R E S E N TAT I O N S F O R
N O N - F U N C T I O N A L R E Q U I R E M E N T S
C L A S S I F I C AT I O N

6.1 introduction

Non-Functional Requirements (NFRs) represent a critical aspect of
Software Engineering (SE), providing specifications related to the
system’s quality attributes, such as security, performance, and us-
ability. Unlike functional requirements, which describe what the
system should do, NFRs define how well the system performs its
functions [5, 21]. Accurately identifying and classifying NFRs early
in the software development life cycle is crucial, as failure to do so
can lead to cost overruns, project delays, and system failures [162,
228]. Consequently, automatic classification of NFRs has become a
focal point in recent research efforts [75, 100, 136].

Recent advancements in ML and NLP have provided new ap-
proaches for automating the classification of NFRs. Shallow ML mod-
els, such as Support Vector Machines (SVM) and Random Forests
(RF), combined with word embedding techniques like Word2Vec
[146], GloVe [169], and FastText [20], have demonstrated significant
success in the NFR classification task [10], even though they are
combined with Deep Learning (DL) solutions, like neural networks
or even advanced approaches like Transformers [99, 220]. Despite
the promising results achieved by ML, DL and NLP models, these
approaches show limitations when capturing complex dependencies
among words or when dealing with a low amount of data.

In the meanwhile, Quantum Natural Language Processing (QNLP)
represents an emerging frontier in computational linguistics and
artificial intelligence [74]. This innovative paradigm leverages the
principles of quantum mechanics, such as superposition and entan-
glement, to encode and process linguistic structures more efficiently

117

118 quantum natural language representations for nfrs classification

than classical methods. In QNLP, grammatical structures and the
semantics of words are modeled as tensor networks or quantum
circuits, opening up new possibilities for enhancing NLP tasks [49,
231]. QNLP models, such as those implemented using the Distribu-
tional Compositional Categorical (DisCoCat) framework, allow for
the compositional representation of sentence meaning using quan-
tum circuits [96]. These methods have shown theoretical potential
for achieving significant computational advantages, particularly in
tasks requiring the representation of high-dimensional and complex
linguistic structures [1, 78, 208].

So, in the first side, classical NLP approaches such as BERT [57]
and TF-IDF [182] often struggle with complex linguistic structures
due to their reliance on surface-level co-occurrence and statistical
patterns. These models may miss deeper compositional elements
of language, especially in tasks that demand understanding gram-
mar and semantics. In contrast, QNLP, which uses string diagrams
and tensor networks, can map such linguistic structures directly
into quantum circuits, providing a more flexible and holistic rep-
resentation of language. Additionally, classical models tend to be
data-demanding, requiring large datasets to perform well, and often
suffering when data is limited. QNLP offers advantages by exploiting
quantum properties like superposition and entanglement, enabling
the expectation for better performance with smaller datasets. By
leveraging categorical quantum mechanics, of which we offer an
overview in Section 6.2, QNLP can model contextual dependencies
within a specific language, positioning it as a promising tool for tasks
like NFR classification, where word dependencies are critical.

This work presents an empirical study on the application of QNLP
to the automatic detection of NFRs defined as a multiclass classifi-
cation task, a novel exploration in the software engineering domain.
Our work explores three distinct approaches: 1) the use of shallow
ML models combined with word embedding techniques, which serve
as a baseline for comparison; 2) a basic model based on tensor net-
works, using string diagrams to represent NFRs; 3) quantum models
that transform string diagrams into quantum circuits and simulate
quantum computation for the NFR classification task. In particular,
despite the state of the art on multiclass classification of NFR offers a

6.1 introduction 119

lot of solutions [10, 101, 133], their focus is on the best performing
solution based on specific techniques and technologies. In addition,
they employ widely used large dataset like Promise [121] and Pure
[68], applying different pre-processing and different requirements
selection. Thus, our first investigation (RQN f r1) aims to assess the
performance of the shallow ML algorithms like SVM, RF, Linear
Regression and so on, when requirements are represented with word
embedding techniques. Our approach differs from the literature in
preprocessing techniques, data volume, and on the choice of shallow
ML solutions rather than advanced DL approaches, like Convolu-
tional Neural Network (CNN) or BERT. This approach opens the
way for the exploration of new techniques for representing require-
ments, namely string diagram. String diagrams provide a visual
and compositional way to represent the grammatical structure of
sentences, capturing the relationships between words and their mean-
ings through the use of tensor networks. Representing requirements
as tensor networks is an unexplored path which we want to bring to
light with this work. This guided our second investigation (RQN f r2),
focusing on the impact of string diagrams application in NFRs multi-
class classification. Lastly, the employment of string diagrams allow
the exploitation of quantum technologies and techniques, as string
diagrams can be manipulated and converted to quantum circuits,
enabling the simulation of quantum computation for the NFR classi-
fication task. This is the focus of our last investigation (RQN f r3) in
which we evaluate the representation of NFR in quantum circuits in
different settings simulating quantum environments, carrying out
shot-based and non shot-based experimentations.

In response to RQN f r1, we find that shallow ML algorithms, when
combined with word embeddings like GloVe and Word2Vec, pro-
duced highly effective models for classifying NFRs. These models
achieve precision, recall, and F1-score metrics exceeding 0.80, demon-
strating the strength of these traditional statistical embeddings in
capturing the semantic relationships in NFRs. However, embeddings
such as TF-IDF and BERT, which are based on word frequency and
contextual embeddings, struggle in the classification task, with sig-
nificantly lower F1-scores, highlighting the difficulty of these models
in handling the volume of data and the specific preprocessing steps

120 quantum natural language representations for nfrs classification

used in this study. RQN f r2 explore the potential of tensor network-
based models, where requirements were represented through string
diagrams. The Cups Reader, which represents language as a sequence
of tensors, outperforms the syntax-based Bobcat Parser, particularly
when coupled with Cross Entropy loss in a PyTorch model. While the
overall performance was not as high as traditional ML techniques,
the results were encouraging, showing that string diagram represen-
tations can offer a competitive alternative, particularly outperforming
BERT-based models in several NFR classes such as Operability, Secu-
rity, and Usability. This suggests that tensor-based representations of
NFRs may offer a novel path forward for requirements classification,
though further refinements are necessary to improve their overall ef-
ficacy. Finally, in addressing RQN f r3, our experiments with quantum
circuit-based models reveal a more complex landscape. The non-shot-
based simulations, which transform quantum circuits into tensor
networks using a Numpy model, demonstrate comparable results to
those in RQN f r2, even though with lower performance overall. Mean-
while, the shot-based simulations show that certain NFR classes,
such as Operability, could achieve high recall, but the remaining
results are generally scarce. The nature of quantum computation and
additional factors, such as backend configuration and shot counts,
introduce new complexities, making it challenging to fully evaluate
the potential of quantum technologies for NFR classification in this
initial exploration. Despite this, the possibility to represent NFRs
through quantum circuits remains a promising direction, particularly
as quantum hardware and simulation environments evolve.

In the end, the main contributions of this work are:
1) A benchmark of combinations of word embeddings and shallow

ML algorithms that differentiate from the state of the art on NFR
classification task;

2) A first attempt to classify NFRs represented as string diagrams
using tensor networks.

3) A novel application of quantum computing techniques for the
NFR classification task, including the use of quantum circuits for
processing linguistic structures.

4) A replication package to replicate and build upon our work [7].

6.2 introduction to quantum nlp 121

5) A road-map to further investigate the application of QNLP
techniques and technologies for NFRs classification task;

6.2 introduction to quantum nlp

Quantum NLP is a developing field that applies quantum computing
principles to the challenges of NLP. This field aims to leverage the
unique capabilities of quantum computers—such as superposition,
entanglement, and quantum parallelism—to enhance the perfor-
mance of NLP tasks, hopefully surpassing the limits of classical
computational methods. Traditional NLP models, such as word em-
beddings (e.g., Word2vec [147]) and deep learning architectures like
Transformers [220], have revolutionized the processing of human
language. However, these models are inherently bound by the con-
straints of classical computation. They typically represent words as
vectors in a high-dimensional space and apply operations that, while
effective, are limited in capturing the full complexity of a language
with its ambiguity.

QNLP introduces a new paradigm by representing linguistic el-
ements as quantum states. In this framework, words, phrases, and
sentences are encoded into quantum systems, where the principles
of quantum mechanics allow for a more expressive representation
of linguistic meaning. Superposition enables the simultaneous repre-
sentation of multiple meanings or interpretations of a word, while
entanglement allows for the complex dependencies between words
to be captured more naturally than in classical models.

One of the foundational models in QNLP is the Distributional
Compositional Categorical (DisCoCat) model, which combines cat-
egory theory with distributional semantics to model the meaning
of sentences in a compositional manner [49]. This model provides a
natural fit for quantum computing, as it aligns with the structure of
quantum mechanics, where compositionality plays a key role.

To facilitate the development and experimentation of QNLP mod-
els, the lambeq library [97] was created by the Quantinuum QNLP
team1. Lambeq is an open-source Python framework that provides

1 https://www.quantinuum.com/

https://www.quantinuum.com/

122 quantum natural language representations for nfrs classification

Parsing Rewriting Parameterisation Training

Sentence

Bobcat Parser

Spiders Reader

Cups Reader

Stairs Reader

Tree Reader

Rewriter

Unify Codomain

Remove Cups

Remove Swaps

Classical Quantum

Tensor

Spider

MPS

IQP
Sim14
Sim15
Sim4

Strongly Entangling

Classical Quantum

PyTorch

Numpy

PennyLane

Tket

TorchQuantum

lambeq 0.4.2

Output

String Diagram

Output

Rewritten
String Diagram

Output

Tensor Network Quantum Circuit

Figure 6.1: The general pipeline implemented through lambeq.

functionality for converting any sentence into a quantum circuit,
utilizing a specified compositional model along with particular pa-
rameterizations and selected ansätze. The process of converting a
sentence into a quantum circuit involves several key steps, each of-
fering a variety of functionalities. These steps include parsing and
encoding, rewriting, parameterisation, and training/testing, as de-
picted in Figure 6.1. We summarize the various features provided
from the framework. The full description of each can be found in
the specific documentation2, from which we grasped most of the
following information and in which can be found visual example for
each kind of parsing, rewriting and parameterisation.

Parsing & Encoding. The parsing process is the step that con-
verts a sentence into a string diagram. Lambeq’s string diagrams
are equipped with types that represent the interactions between
words according to the pregroup grammar formalism [112]. When
annotated with pregroup types, the diagram for a sentence shows
each wire labeled with an atomic type or an adjoint. For instance,
in the sentence “John walks in the park”, the noun “John” might be
labeled with type n, corresponding to a noun or noun phrase, while
the verb “walks” could be labeled with type s, corresponding to a
sentence. The adjoints nr and nl indicate that a noun is expected to
the right or left of a specific word, respectively. The library provides
different syntactic models, offering flexibility in how linguistic struc-
tures are represented and processed. In the following we detail the

2 https://cqcl-dev.github.io/lambeq/intro.html

https://cqcl-dev.github.io/lambeq/intro.html

6.2 introduction to quantum nlp 123

various parsing methods supported by lambeq, with a focus on the
DisCoCat model and alternative approaches such as bag-of-words,
word-sequence models, and tree readers.

The DisCoCat model is central to lambeq’s syntax-based parsing
capabilities. This model combines category theory with distributional
semantics to represent sentence meaning compositionally, generating
a Combinatory Categorial Grammar (CCG) string diagram.

The Spiders reader is an example of a bag-of-words approach
where a sentence is represented as a collection of words without
regard to order, combining the words using a spider, which is a
commutative operation. In this case, the diagram does not follow
pregroup grammar rules, as the model treats words as unordered
elements, which may be suitable for tasks where word order is less
significant.

The Cups Reader and Stairs Reader models are for sequential word
composition. These models compose words from left to right in a
linear sequence. In particular, the Cups Reader generates a “tensor
train”, ensuring that the final sentence representation is an order-1
tensor. A START symbol, represented as an order-1 tensor (a vector),
is used at the beginning of the sentence to maintain this structure.

The Stairs Reader uses a recurrent structure, similar to a recurrent
neural network (RNN), combining consecutive words through a “cell”
represented by a box.

Tree Reader provide another syntax-based parsing approach, lever-
aging the structure of CCG derivations. A CCG derivation, which
follows a biclosed form, is directly interpreted as a sequence of
compositions. By default, composition is handled by a single “cell”
named UNIBOX, even though lambeq offers customization through
the TreeReaderMode, allowing for different cells based on CCG rules
or rule-type pairs and enabling more fine-grained control over the
composition process.

Rewriting. The rewriting stage is adopted for simplifying and
optimizing string diagrams derived from syntactic derivations. These
diagrams, which represent the structure and relationships between
words in a sentence, can become complex, leading to increased com-
putational costs and longer training times. The rewriting process aims
to address these issues by applying various rewriters and rewriting

124 quantum natural language representations for nfrs classification

rules to reduce the complexity of the diagrams. The rewriting can be
applied at two stages: box-level and diagram-level.

The former apply transformations at the level of individual boxes
within a diagram. Each rewriting rule operates on one box at a
time, with no access to the broader context of the diagram. This
localized approach is useful for making specific, targeted changes to
parts of the diagram without considering the entire structure. The
rewrite module provides several rules for simplifying diagrams. For
example, the “prepositional_phrase” rule reduces the complexity
of prepositional phrases by using a “cap” to bridge discontinuous
wires, effectively lowering the order of the tensor associated with
the preposition. The determiner rule, on the other hand, eliminates
determiners like “the” by applying a cap on the corresponding type,
simplifying noun phrases.

Unlike box-level rewriters, diagram-level rewriters operate on the
entire diagram, enabling more comprehensive transformations that
require an understanding of the broader context within the dia-
gram. There are tree main diagram-level rewriters: Unify Codomain
Rewriter, Remove Cups Rewriter and Remove Swaps Rewriter.

The Unify Codomain Rewriter is particularly useful when dealing
with diagrams that have multiple free wires, which could lead to
dimension mismatch errors during training. The Unify Codomain
Rewriter merges these free wires into a single wire, ensuring consis-
tent training. It does so by looking at the codomain of the diagram
and combining multiple wires into one using an additional box.

The Remove Cups Rewriter removes cups from a diagram, re-
ducing or eliminating post-selection. By doing so, it streamlines the
diagram and enhances computational efficiency, making it easier to
implement on quantum hardware.

The Remove Swaps Rewriter eliminates swaps from a diagram,
producing a proper pregroup diagram that aligns with J. Lambek’s
definition of pregroup grammars [112]. This rewriter is essential for
maintaining the structural integrity of the diagram in accordance
with the theoretical underpinnings of pregroup grammar.

Parameterisation. The parameterisation phase consists in trans-
forming the string diagrams derived from sentences into concrete
quantum circuits or tensor networks. This stage involves the ap-

6.2 introduction to quantum nlp 125

plication of ansätze, which define the specific parameters for the
quantum or classical systems, such as the number of qubits or tensor
dimensions associated with each grammatical type in the sentence.

In classical experiments, Tensor, Matrix Product States and Spider
Ansatz can be applied to convert the string diagram into a tensor
network, assigning dimensions to the atomic types in the diagram,
defining how grammatical types are represented as tensors.

In particular, the Tensor Ansatz assigns specific dimensions to the
noun and sentence spaces, creating a tensor network where each wire
in the diagram corresponds to a specific dimension. This approach
is suitable for classical NLP tasks where quantum resources are not
available. The Matrix Product States (MPS) Ansatz is used to convert
large tensors, which can become unwieldy in classical experiments,
into sequences of smaller, order-3 tensors connected with cups. This
approach is necessary when tensors are too large to be efficiently
processed. The user have to also define the bond dimension, which
specifies the dimensionality of the wires connecting these tensors.
The Spider Ansatz is another method for managing large tensors,
where tensors of order greater than 2 are split into sequences of order-
2 tensors (matrices) connected with spiders. This method reduces the
space required to store tensors and makes the computation tractable.

In quantum experiments, the string diagram is converted into a
quantum circuit by applying a Circuit Ansatz. Lambeq provides
several quantum ansätze, each with different configurations and
properties suitable for various quantum computing tasks. The In-
stantaneous Quantum Polynomial (IQP) Ansatz interleaves layers
of Hadamard gates with diagonal unitaries. The diagonal unitaries
are implemented using adjacent controlled-Rz (CRz) gates [76]. This
ansatz is particularly useful for creating circuits that are classically
hard to simulate. To convert a string diagram into an IQP circuit, you
assign qubits to atomic types (e.g., 1 qubit for nouns and 1 qubit for
sentences) and specify the number of IQP layers. Sim14 Ansatz is a
modification of Circuit 14 define by Sim et al. [197], where the circuit-
block construction is replaced with two rings of CRx gates, oriented
in opposite directions. It provides a different entanglement structure
compared to the IQPAnsatz. Sim15 Ansatz is similar to Sim14Ansatz,
but uses two rings of CNOT gates instead of CRx gates, providing

126 quantum natural language representations for nfrs classification

lambeq experiments

Runs on quantum hardwareQuantum simulations on
classical hardware

Evaluating tensor networks
on classical hardware

Shot-based Non shot-based

Noiseless Noisy

Figure 6.2: Hierarchy of experimental applications in lambeq.

another variation in the entanglement structure. Sim4 Ansatz cor-
responds to Circuit 4 defined as Circuit 14 by Sim et al. [197]. It
employs a layer of Rx gates followed by Rz gates, and a ladder of
CRx gates per layer, making it a more straightforward but effective
quantum circuit design. Adapted from the PennyLane implementa-
tion, Strongly Entangling Ansatz uses three single-qubit rotations
(RzRyRz) followed by a ladder of CNOT gates with varying ranges
per layer. This ansatz is designed to create strong entanglement across
the qubits, which is crucial for certain quantum algorithms.

Training & Test. The training and testing stage involves using
quantum circuits or tensor networks obtained from the parameteri-
sation to train models for various machine learning tasks. Lambeq
provides several models, each suited to either quantum or classical
experiments. All the possible experiments that can be done through
lambeq are shown in Figure 6.2.

The model employed to evaluate tensor networks on classical
hardware is the Pytorch Model. It treats string diagrams as tensor
networks, where each box in the diagram corresponds to a tensor,
and the edges between boxes define how these tensors are contracted
(i.e., how the data flows between different parts of the model). The
tensor contractions in this model are optimized using opt_einsum,
a library that efficiently handles complex tensor operations. This
makes the Pytorch Model capable of handling large and intricate
tensor networks typical in advanced machine learning tasks. The

6.2 introduction to quantum nlp 127

Pytorch Model is versatile and can be integrated with classical neural
networks. Users can subclass the model and override the forward
method to combine the outputs of tensor diagrams with other neural
network layers, allowing the creation of customized architectures.

The Numpy Model is a quantum model that utilizes low-level
simulators to convert quantum circuits into tensor networks. These
tensor networks are then contracted efficiently using the opt_einsum
library. The model supports two types of simulators: unitary simula-
tors and density matrix simulators. The Unitary Simulator is used
when the circuit contains only Bra, Ket, and unitary gates. It con-
verts the circuit with n output qubits into a tensor of shape (2,) *
n, which is a pure quantum state. On the other hand, the Density
Matrix Simulator is used when the circuit involves operations like
Encode, Measure, or Discard, which result in a mixed quantum state.
It converts the circuit into a tensor of shape (2,) * (2 * n + m), where
n is the number of output qubits and m is the number of output bits.
This allow the exact (non shot-based) simulation of quantum circuits
on classical hardware.

The PennyLane Model leverages the capabilities of PennyLane3,
a popular quantum machine learning library, along with PyTorch,
to create hybrid quantum-classical models. This model allows to
perform classical-quantum machine learning experiments where
quantum circuits are combined with classical neural networks. The
model offers two modes of operation: State Vector Simulation and
Probability Simulation. The former mode simulates the quantum
circuit as a pure quantum state using unitary operations. It is effi-
cient for simulation purposes but does not account for measurement
noise. The latter mode simulates the quantum circuit as a mixed
state, taking into account the probabilities of different outcomes after
measurements. This mode is required when running experiments on
real quantum hardware, where measurement noise and errors are
present. The PennyLane Model can be used to optimize simulated
circuits using exact back-propagation in PyTorch, which can lead
to more accurate training compared to optimization methods like
Simultaneous Perturbation Stochastic Approximation (SPSA) [207].

3 https://pennylane.ai/

128 quantum natural language representations for nfrs classification

However, exact back-propagation is not feasible on real quantum
hardware, where the parameter-shift rule is used instead. Addition-
ally, the model supports hybrid architectures where the output of a
quantum circuit is fed into a classical neural network. This allows
for the creation of complex models that leverage both quantum and
classical computational advantages.

The Tket Model is designed for running quantum circuits on real
quantum hardware or in simulated environments that account for
hardware-specific noise and architecture constraints, allowing quan-
tum simulations in noisy shot-based environment. This model utilizes
the “pytket” library, a high-performance simulator framework that is
a part of the Qiskit suite, developed by IBM [175], which provides
access to various quantum hardware backends. This framework sup-
ports a variety of backends, including AerBackend (the one that we
used in our experiments) for noisy simulations of quantum machines
and direct execution on devices like Quantinuum’s H-series or IBM
Quantum hardware. The Tket Model is particularly useful for ex-
periments that require shot-based results, which are the counts of
measurement outcomes after running a quantum circuit multiple
times. These shot-based results are essential for understanding the
probabilistic nature of quantum computing. The model can be config-
ured to use different noise models and compilation passes specific to
the hardware, making it a versatile choice for experiments that need
to consider the limitations and characteristics of quantum devices.

The TorchQuantum Model is designed for running exact non-
shot-based simulations of quantum circuits. It uses torchquantum, a
statevector-based simulator that integrates with PyTorch, allowing for
precise gradient-based optimization of quantum circuits. This model
is particularly advantageous when precise simulations are required
without the need for probabilistic outcomes, which are typical in
shot-based quantum computing. The TorchQuantum Model supports
exact back-propagation, making it suitable for tasks where accurate
gradient computation is crucial. However, this exactness comes at
the cost of not being applicable to real quantum hardware, where
the probabilistic nature of quantum operations must be considered.

6.3 empirical study design 129

6.3 empirical study design

This section provides an overview of the empirical study, starting
with the reasoning behind the formulation of our research questions.
We then present the dataset selected for our experiments, including
the data sources and preprocessing methods. After, we outline the
evaluation metrics employed to measure the predictive accuracy
of the Quantum NLP approaches under consideration. Lastly, we
address potential threats to the validity of our study and describe
the strategies implemented to minimize these risks.

In this study, we aim to investigate how Quantum NLP strategies
and models can be applied to categorize non-functional requirements
and compare their performance against classical NLP approaches.
We aim to understand the specific advantages, if any, Quantum
NLP may offer in handling such task and to evaluate whether the
progress on this new field translate into measurable improvements
in classification efficiency.

◎ Our Goal. Explore the potential of Quantum NLP in the con-
text of non-functional requirements classification.

6.3.1 Motivations of Research Questions

Previously, we discussed how different works have exploited ML and
DL to address the multiclass NFRs classification problem. However,
each of them used a different dataset, focusing on specific NFRs, dif-
ferent preprocessing techniques, different word embedding methods,
and different validation techniques. Since in this work we introduce
a new way of representing requirements to prepare them later for
training ML models, we felt it was essential to conduct an initial
exploration that would allow us to make a comparison, based on
the same dataset, the same metrics, and using the same validation
method. To evaluate the effectiveness of Quantum NLP in compari-
son to traditional NLP methods, we begin by determining whether
shallow ML models combined with traditional word embedding

130 quantum natural language representations for nfrs classification

techniques are suitable for the specific task. This consideration led to
the formulation of our first research question:

Û RQN f r1. How effectively can shallow machine learning algo-
rithms classify non-functional requirements when represented
with word embeddings techniques?

By answering RQN f r1 we have the baseline for the comparison
against Quantum NLP strategies. Since we have different choices in
this new approach (see Figure 6.2), as described in Section 6.2, we
start our investigation by evaluating tensor networks on classical
hardware, exploiting the classical path in the pipeline shown in
Figure 6.1. This choice is due to the fact that first and foremost
we want to understand how the representation of requirements by
string diagrams impacts the performance of the models, without
changing the underlying computational model. This also allows us
to make a comparison with classical methods (word embeddings and
shallow ML) that exploit a different representation of requirements
to predict their class. This lead to the definition of the following
research question:

Û RQN f r2. How effectively can a basic model classify non-
functional requirements when represented as string diagrams
and parameterised as tensor networks?

Given the novelty of string diagrams and tensor networks in repre-
senting language structures, this research question seeks to examine
the effectiveness of symbolic and sequential parsing models in classi-
fying NFRs. The focus is to assess the capability of tensor networks,
which offer a distinct and mathematically elegant representation
of language, to provide more accurate classifications compared to
traditional word embeddings. The representation in string diagrams
opens the road for our last investigation that cover the quantum
simulation on classical hardware, leading to the formulation of the
following research question:

6.3 empirical study design 131

Û RQN f r3. How effectively can quantum models classify non-
functional requirements when represented as string diagrams
and parameterised as quantum circuits?

Quantum computing holds the promise of enhanced problem-
solving capabilities in certain computational tasks, and this research
question aims to understand whether quantum circuits, representing
language as tensors, can lead to better or comparable classification
performance to classical machine learning and tensor-based models.
Given the probabilistic nature and complex configurations involved
in quantum computing (e.g., shots, compilation passes), RQN f r3 in-
vestigates whether quantum-enhanced models can provide a tangible
advantage in this domain or whether they introduce new challenges,
such as parameterization and circuit complexity. Given the unavail-
ability of quantum resources, the only option available to us is to
simulate a quantum environment, which, as shown in Figure 6.2,
can be non-shot based or shot based. Therefore, we explored both
avenues, leaving experimentation on quantum resources as possible
future research.

6.3.2 Dataset

To answer the research questions presented in the previous Section
6.3.1, we exploit the PROMISE expanded dataset [121]. We choose
this dataset because previous studies exploited it [177, 179, 193] to
deal with the NFRs classification task.

It includes in total 969 requirements detailed in Table 6.1 coming
from 15 different projects. However, we do not use the entire dataset
because the conversions of requirements into string diagrams and,
then, into tensor networks or quantum circuits could be hard to
handle for long requirements. Furthermore, utilizing a larger dataset
would demand significantly more hardware resources, particularly
in quantum simulations. Consequently, we implemented various
strategies to render the requirements manageable for our experiments.
While these data manipulation techniques allowed us to address our

132 quantum natural language representations for nfrs classification

research questions, they influenced with no doubt the outcomes of
our experiments.

Firstly, we reduced the number of requirements from 969 to 354

by selecting only on the most frequent non-functional requirements,
specifically security (SE), usability (US), operational (O), and perfor-
mance (PE) requirements. Then, we apply some text normalization
techniques. In particular, we simplify the text by eliminating commas,
periods, question marks, and other punctuation marks. We remove
common English words (e.g., “and”, “the”, “is”) that usually don’t
add much value or information to the overall meaning of a sentence.
We apply the lemmatization technique, reducing words to their base
or root. For example, “running” would be lemmatized to “run”, and
thus reducing the vocabulary size to group similar words together.
We calculate the mean size, in terms of words, of requirements in the
dataset at this point, and it is a little bit more than 22 words per each
requirement. We filter out the requirements counting more than 15

words, resulting in 282 requirements left. Lastly, to handle class im-
balance in the dataset we randomly reduce the number of samples in
the majority class so that all classes have the same number of samples.
By balancing the dataset, the intention is to help prevent bias in the
model towards the majority class and improve overall performance
in multi-class classification tasks. We end our preprocessing with a
total of 216 requirements, 54 per each NFR considered.

Finally, to use the same requirements set in the different experiment
scenario, we divide the 216 requirements in train, test and validation
test in percentage of 0.6, 0.2 and 0.2, respectively. In the end, the train
set counts 128 requirements, the test set counts 44 requirements and
the validation set counts 44 requirements.

6.3.3 Research Methodology

In this section we outline the methodology we apply to answer to
each research question we define.

6.3 empirical study design 133

Table 6.1: Details of the PROMISE expanded dataset.

Class Description Frequency

Availability (A) The likelihood that the system is accessible to users at any
given time.

31

Fault Tolerance (FT) The capability of a system, product, or component to continue
operating as intended despite the occurrence of hardware or
software faults.

18

Legal & Licensing (L) The necessary certificates or licenses required for the system. 15

Look & Feel (LF) The aesthetic style and appearance of the product. 49

Maintainability (MN) The effectiveness and efficiency with which the product or
system can be modified by its maintainers.

24

Operability (O) The ease with which a product or system can be operated and
controlled.

77

Performance (PE) The performance of the system relative to the resources used
under specified conditions.

67

Portability (PO) The effectiveness and efficiency with which a system, product,
or component can be transferred to different hardware, soft-
ware, or usage environments.

12

Scalability (SC) The capability of a product or system to be adapted effectively
and efficiently for different or evolving hardware, software, or
operational environments.

22

Security (SE) The ability of a system or product to protect information and
data, ensuring appropriate access levels based on user autho-
rization.

125

Usability (US) The extent to which a system can be used by specified users to
achieve specific goals with efficiency, effectiveness, and satis-
faction in a context.

85

Functional (F) A general category encompassing functional requirements. 444

Total Requirements 969

134 quantum natural language representations for nfrs classification

6.3.3.1 Study design to answer RQN f r1

RQN f r1 aims to determine the effectiveness of various combinations
of word embeddings and shallow ML algorithms for the task of
classifying NFRs. The approach is illustrated in Figure 6.3.

To identify the most effective approach, we experiment with mul-
tiple embedding techniques followed by a set of ML algorithms.
Specifically, the study examines five distinct word embedding tech-
niques, namely TF-IDF, Word2Vec, GloVe, FastText, and BERT, each
selected for its unique characteristics and previous applications in
similar contexts [67].

Lazy Predict

27 ML algorithms
from

 Word2vec

BERT

TF-IDF

GloVe

fastText

Word ML
List of

Requirements

Figure 6.3: Process applied to address RQN f r1.

TF-IDF [182] is employed for its simplicity and effectiveness in
extracting informative features from textual data. It is particularly
useful in scenarios where interpretability of word importance is
crucial. Word2Vec [146] is included for its ability to capture semantic
relationships between words by learning dense vector representations,
making it suitable for tasks requiring an understanding of word
meaning beyond simple word counts. Specifically, we utilize pre-
trained vectors derived from a subset of the Google News dataset
with nearly 100 billion words. The model comprises 300-dimensional
vectors for 3 million words and phrases, with the latter generated
using a data-driven method described in [148]. GloVe [169] is chosen
for its capability to model global word co-occurrence statistics, which
helps in capturing the semantic structure of the text at a higher
level. For this we use pre-trained glove vectors based on Wikipedia
2014 plus Gigaword 5 (6B tokens, uncased). FastText [20, 92, 93]

6.3 empirical study design 135

is exploited for its proficiency in handling sub-word information,
making it ideal for processing languages with rich morphological
variations. For our experiment, we exploit the 1 million word vectors
trained with subword infomation on Wikipedia 2017, UMBC webBase
corpus and “statmt.org” news dataset (16B tokens). Lastly, BERT [57],
a transformer-based model, is employed for its advanced contextual
embeddings, which capture bidirectional context, thus enabling more
nuanced understanding of the text, particularly in complex NLP
tasks. Context-free models like Word2vec and GloVe produce a single
“word embedding” for each word in the vocabulary. As an example,
a word like “table” would have the same representation in both “a
book on the table” and “a table in the book”. In contrast, contextual
models create a unique representation for each word, depending on
the surrounding words in the sentence. In our work, we only leverage
the Bert Tokenizer, in particular the “bert-base-uncased”, to embed
our requirements.

To determine the optimal ML model for classifying non-functional
requirements, we utilize the Lazy Predict4 library, which offers a
streamlined method for comparing a broad range of classifiers with-
out requiring extensive manual tuning of hyperparameters. This
empirical investigation involves testing 27 different ML algorithms
provided by Lazy Predict, applied to the outputs of the five embedding
techniques mentioned above.

It is worth noting that in our study, we use a collection of require-
ments coming from different projects [121]. Details about the datasets
can be found in Section 6.3.2. This have been chosen because previous
studies exploited them [177, 179, 193], although each of the papers
exploits the data for different purposes, such as including all NFRs
instead of a particular set, and, thus, in different experimental setups.

To assess which is the best combination we perform a hold-out
validation, dividing the dataset in train, test and validation set and
calculating the metrics listed in Section 6.3.4. So, we firstly take the
best model, based on the Accuracy and the F1-score, by using Lazy
Predict for each Word Embedding. Then we test it on the hold out
set to assess its performance on unseen requirements.

4 The Lazy Predict library: https://github.com/shankarpandala/lazypredict.

https://github.com/shankarpandala/lazypredict

136 quantum natural language representations for nfrs classification

6.3.3.2 Study design to answer RQN f r2

The second research question aims to explore the effectiveness of
classical models based on tensor networks for the task of classify-
ing NFRs. To address this, we employ string diagrams, which are
well-suited for capturing the compositional structure of language in
a mathematical way. The approach begins by representing require-
ments as string diagrams, which are then parameterized into tensor
networks. These tensor networks serve as input for classical ML
models that are tasked with the classification of NFRs. The entire
process involves several steps, each leveraging specific techniques
and tools specified in Figure 6.4.

Evaluating tensor networks on classical hardware

List of
Requirements

Bobcat Parser

Cups Reader

Bobcat Tensor

Cups Tensor

Model

ModelModel

Binary Cross Entropy

Cross Entropy

Binary Cross Entropy

Cross Entropy

Figure 6.4: Process applied to address RQN f r2.

Initially, requirements are parsed and represented as string dia-
grams using a compositional model. In our study, we utilize the
DisCoCat (Distributional Compositional Categorical) model, which
is known for its ability to combine syntax (from categorical gram-
mars) with semantics (from vector spaces). The string diagrams are
created using Bobcat parser, a state-of-the-art statistical CCG parser
[45], and Cups Reader. An example output is given in Figure 6.7.
The former converts the syntactic structure of the sentence into a
pregroup diagram (6.5), the latter combines words linearly using a
stair diagram (6.6).

Once the string diagrams are constructed, the next step involves
parameterizing these diagrams into tensor networks. This is achieved
through the application of a Tensor Ansatz. In this study, we employ
a classical Tensor Ansatz, which assigns specific dimensions to the
atomic types in the string diagram, effectively converting the abstract
diagram into a concrete tensor network. In our experimentation,

6.3 empirical study design 137

Figure 6.5: Requirement parsed with Bobcat Parser.

Figure 6.6: Requirement parsed with Cups Reader.

Figure 6.7: Example of requirements converted in string diagram.

we assign “4” as dimension to both the atomic types of “sentence”
and “noun”. The choice of dimensions is guided by the linguistic
properties of the words and the grammatical types they are associated
with. The tensor networks derived from the string diagrams are then
contracted by the model to obtain the final classification. Tensor
contraction is a process that involves summing over shared indices
in the network, resulting in a lower-dimensional representation that
encapsulates the meaning of the entire sentence.

Examples of tensor networks are given in Figure 6.10, where Figure
6.8 is the parameterized version of the string diagram coming from
Bobcat Parser, while 6.9 is the parameterized version of the string
diagram coming from Cups Reader. These tensors are then fed into
a basic ML model which is trained to classify the requirement as
belonging to different categories of non-functional requirements.

The classical ML model is trained on a labeled dataset of non-
functional requirements, where each requirement has been pre-
categorized. In this experiment, we exploit the PyTorch model pro-
vided by lambeq. It is possible of combining tensor networks and
neural network architectures to it, however, we use its default defini-
tion as provided by the library.

As usually, the training process involves optimizing the model’s
parameters to minimize a loss function, which measures the differ-
ence between the predicted classifications and the actual labels. In
particular, we train our model applying an early stop on the best
accuracy, adopting “AdamW” as optimizer, with a learning rate of

138 quantum natural language representations for nfrs classification

Figure 6.8: Requirement parsed with Bobcat Parser and parameter-
ized with Tensor Ansatz.

Figure 6.9: Requirement parsed with Cups Reader and parameter-
ized with Tensor Ansatz.

Figure 6.10: Examples of output of Tensor Ansatz from string diagrams.

0.01, 50 epochs and testing two loss functions: Binary Cross-Entropy
with Logits Loss and Cross Entropy Loss. After training, the model
is evaluated on a separate test set to assess its ability to accurately
classify unseen NFRs. The requirements sets are the same used in
the experimentation for RQN f r1, detailed in Section 6.3.2.

6.3.3.3 Study design to answer RQN f r3.

We follow the quantum path in Figure 6.1, performing two kind of
quantum simulation: (a) a non-shot based experiment and (b) a noisy
shot based experiment (see Figure 6.2), as detailed in Figure 6.11.

The Parsing and Encoding phase is the same adopted in the previ-
ous RQN f r2, ending with the representation of requirements as string
diagrams (see Figure 6.7).

Only for (b) the noisy shot based experiment, we rewrite the
diagrams to make it simpler for the training of the quantum model
simulating scenario. In particular, we adopt the Unify Codomain

6.3 empirical study design 139

Quantum simulations on classical hardware

List of
Requirements

Bobcat Parser

Cups Reader

Non shot-based

Noisy shot-based

Bobcat Rewritten

Cups Rewritten

Bobcat Quantum circuit

Cups Quantum circuit

Numpy Model

Numpy Model

Bobcat Quantum circuit

Cups Quantum circuit

Tket Model

Tket Model

Figure 6.11: Process applied to address RQN f r3.

Rewriter and the Remove Cups Rewriter. The former rewriter looks
at the codomain of the diagram, and if this consists of more than one
wires, it merges these wires with an extra box. The latter removes
cups from a given diagram, because diagrams with less cups become
circuits with less post-selection, which results in faster Quantum ML
experiments. An example output of this phase is given in Figure 6.14.

The following step is to parameterize the diagrams into quantum
circuits. This is done by applying a quantum circuit ansatz, which
maps the abstract structure of the string diagrams to specific quantum
gates and qubits. The ansatz determines the qubits required and the
type of quantum operations (gates) that will be applied to each
component of the string diagram. In this study, we investigate the
Instantaneous Quantum Polynomial (IQP) Ansatz, which interleaves
layers of Hadamard gates with diagonal unitaries [76].

Note that at this point we have in total four kind of diagrams to
deal with. For the experiment (a), i.e. the non-shot based simulation,
we have the diagrams output of the Bobcat parser and Cups Reader
(Figure 6.5 and Figure 6.6, respectively). For the experiment (b), i.e.
the noisy shot based simulation, we have the diagrams output of the
rewriting phase (Figure 6.12 and Figure 6.13).

An important choice is made on the setup of the IQP Ansatz,
which determines the structures of the created circuits. The setup
of the IQP Ansatz is configured through a mapping of atomic types
(such as sentences and nouns) to qubits, along with the definition

140 quantum natural language representations for nfrs classification

Figure 6.12: Requirement parsed with Bobcat Parser
and rewritten with Unify Codomain and
Remove Cups rewriters.

Figure 6.13: Requirement parsed with Cups Reader
and and rewritten with Unify Codomain
and Remove Cups rewriters.

Figure 6.14: Examples of output of Rewriting phase from string diagrams.

of key parameters that control the structure and complexity of the
quantum circuit. In our study, the IQP Ansatz is characterized by
a single layer of quantum gates (n_layers=1), the use of multiple
single-qubit parameters (n_single_qubit_params=3), and the option
to discard additional qubits after processing (discard=True). Firstly,
we define a mapping that assigns a specific number of qubits to each
atomic type present in the string diagram. In our case “sentence”
is mapped to 2 qubits, while “noun” is mapped to 1 qubit. This
mapping determines how many qubits are allocated to represent the

6.3 empirical study design 141

quantum states corresponding to sentences and nouns in the diagram.
The choice of 2 qubits for sentences allows for a richer representation
of their structure, while 1 qubit is used for nouns, reflecting their
simpler structure in this context. The “n_layers” parameter is set
to 1, indicating that the quantum circuit will consist of a single
layer of Hadamard gates interleaved with diagonal unitaries. This
setup provides a basic level of entanglement and interaction between
the qubits, suitable for capturing relationships in the data while
keeping the circuit relatively simple. The “n_single_qubit_params”
parameter is set to 3, meaning that each qubit will be associated
with three parameterized single-qubit gates (such as rotations). These
gates allow for fine-tuning the quantum states of individual qubits,
enabling the circuit to capture more detailed information about the
input data. This parameterization is crucial for adjusting the quantum
circuit to effectively encode the information contained in the string
diagrams. Lastly, the “discard=True” option indicates that any qubits
that are not needed after the main computation will be discarded.
Discarding excess qubits helps reduce the complexity of the circuit
and avoids potential issues with post-selection, making the circuit
more efficient and easier to execute on quantum hardware.

We use IQP Ansatz configured in this way for all of our experi-
ments. Examples of resulting quantum circuits are given in Figure
6.19. A more detailed picture of each can be found in the shared
notebooks in the replication package [7].

The next step is the training and testing. For the (a) non-shot based
experiment, we simulate a quantum environment using the Numpy
Model, which leverages tensor networks simulations to represent
the quantum circuits and their operations. We set “use_jit=True”
parameter, enabling Just-In-Time (JIT) compilation, which optimizes
the model’s performance by speeding up the evaluation of the tensor
networks. In this case, we only use the Cross Entropy Loss as the loss
function, as it is the most suited one for the multiclass classification
task and because we do not want to add another parameter to be
analyzed at this stage, in contrast to the previous experimentation
for RQN f r2. The model is trained for 50 epochs, while the SPSA
Optimizer [207] is used for optimizing the model’s parameters. Note
that the optimizer’s behavior is controlled by three hyperparameters:

142 quantum natural language representations for nfrs classification

Figure 6.15: Parameterised circuit
from diagram in Figure
6.5.

Figure 6.16: Parameterised circuit
from diagram in Figure
6.6.

Figure 6.17: Parameterised circuit
from diagram in Figure
6.12.

Figure 6.18: Parameterised circuit
from diagram in Figure
6.13.

Figure 6.19: Examples of output of IQP Ansatz from string diagrams.

“a”, the step size scaling factor or learning rate, set to 0.05; “c”, the
perturbation scaling factor, set to 0.06; and “A”, a stability constant,
set to 0.01 * 50 (number of epochs). This is the default configuration
suited for most of the cases, and we use this one as our first intention
is not to find the most effective setup, but rather to explore the various
scenario provided in this field. The training process is carefully
monitored, and early stopping on the accuracy metric is employed to
prevent overfitting, ensuring the model’s robustness and effectiveness
in classifying non-functional requirements.

For the (b) noisy shot based experiment we use the AerBackend
from the “pytket” library, which simulates the execution of quantum
circuits on classical hardware. This backend is configured to mimic
the behavior of a real quantum device, including the execution of
circuits in a shot-based manner. Such execution can be configured

6.3 empirical study design 143

in different ways. In our study, the circuits are compiled using the
default compilation pass with a level of 2, that ensures that the circuits
are optimized for execution on the simulated quantum hardware,
reducing errors and improving efficiency. The number of shots is set
to 8192, meaning each circuit will be executed 8192 times. The use
of multiple shots allows the model to estimate the probabilities of
different outcomes, which is essential for tasks that rely on statistical
results, such as classification. We employ the Tket Model that converts
the quantum circuits into a format compatible with the AerBackend
and prepares them for execution in a shot-based manner. The training
of such model follow the same configuration of the experiment (a):
Cross Entropy Loss as loss function, 50 epochs, SPSA as optimizer
with the same parameters “a”, “c” and “A” as in experiment (a).
Again, we set the early stopping on the accuracy.

For both the experiment (a) and (b), we use the same train, test
and validation set used in the previous RQs, so that we can make a
comparison between the results obtained from the use cases.

6.3.4 Evaluation Criteria

To evaluate the models we experiment with, we utilize well-established
information retrieval metrics: Accuracy, Precision, Recall, and F1-
score [9, 173].

Accuracy measures the proportion of correct predictions, including
both true positives and true negatives, out of the total number of predic-
tions made by the model (true positives + true negatives + false positives
+ false negatives). Precision, defined as true positives / (true positives +
false positives), reflects the accuracy of the positive predictions made
by the model. Recall, calculated as true positives / (true positives +
false negatives), assesses the model’s ability to identify all relevant
instances. F1-score is the harmonic mean of Precision and Recall, pro-
viding a single metric that balances these two aspects. We focus on
the weighted-average F1-score, which is computed by averaging the
F1-scores of each class while accounting for the number of instances
in each class.

144 quantum natural language representations for nfrs classification

We choose these criteria due to their importance in most if not
all classification tasks. In our study, Recall should be particularly
significant because stakeholders may prioritize a tool that identifies
all potential NFRs, even if it results in some incorrect predictions
[105]. Moreover, these metrics allow for comparisons between experi-
ments we carry out and with existing or following works in literature,
helping to assess and analyze the effectiveness or weaknesses of this
approach. The objective is to evaluate the models’ accuracy in identi-
fying NFRs and to identify any limitations in this task. For evaluating
the results, we consider a model to be effective if it achieves an F1-
score greater than 0.7, a threshold that has been used in studies as
an indicator of model quality [87, 105].

6.4 analysis of the results

In this section, we present the results of our investigation for each
research questions formulated in Section 6.3.1.

6.4.1 RQN f r1. How effectively can shallow machine learning algorithms
classify non-functional requirements when represented with word
embeddings techniques?

We summarize the results in Table 6.2, which provides a comparison
of word embedding techniques (TF-IDF, BERT, fastText, Word2vec,
and GloVe) and their performance when combined with different ML
models. Each technique is evaluated based on the accuracy and F1-
score of the models, and a detailed analysis is provided by examining
the best model performance on a hold-out test set.

For TF-IDF, performance remains relatively low across all models
(Table 6.3). The Random Forest Classifier performs best, achieving an
accuracy of 0.39 and an F1-score of 0.36. However, on the hold-out set
(Table 6.4), results reveal poor precision and recall, especially for the
Security (SE) class, which fails to produce any correct classifications.
BERT embeddings show a notable improvement over TF-IDF (Table
6.5). The Ridge Classifier CV delivers the best performance with an
accuracy of 0.55 and an F1-score of 0.54.

6.4 analysis of the results 145

Despite these gains, hold-out set results (Table 6.6) remain mod-
erate, with Operability (O) and Performance (PE) classes achieving
the highest scores. However, challenges persist with the Security (SE)
and Usability (US) classes, which record lower F1-scores. Moving to
fastText embeddings, we observe superior performance compared to
both TF-IDF and BERT. The SVC (Support Vector Classifier) model
achieves an accuracy of 0.66 and an F1-score of 0.66. On the hold-out
set (Table 6.8), results remain consistent across all classes, with an
average F1-score of 0.68. The Security (SE) class demonstrates signifi-
cant improvement, reaching an F1-score of 0.70, which is higher than
what is observed with previous embeddings. Word2vec provides
even stronger results, with the Random Forest Classifier achieving
an accuracy of 0.77 and an F1-score of 0.78. The hold-out set (Table
6.10) further confirms this, particularly with the Performance (PE)
class, which reaches an impressive F1-score of 0.92. The average
F1-score across all classes stands at 0.81, highlighting the effective-
ness of Word2vec for NFR classification tasks. GloVe embeddings
outperform all other techniques, with the NuSVC model delivering
the highest accuracy of 0.82 and an F1-score of 0.82. On the hold-out
set (Table 6.12), results are outstanding, with an average F1-score of
0.84. Precision and recall remain balanced across all classes, and the
Security (SE) class achieves an F1-score of 0.80, making GloVe the
most effective embedding technique for the NFRs classification task.

ø Summary of the Results. The best overall performance is
achieved using GloVe embeddings combined with the NuSVC
model, which demonstrates superior results across all metrics.
Word2vec also provides interesting results when combined with
Random Forest Classifier, slightly worse than GloVe. While fast-
Text achieves a balanced and acceptable performance across
classes when combined with the SVC model, BERT fails to achieve
0.50 in F1-Score in 3 out of 4 classes. TF-IDF, while expected to
be effective for simpler tasks, is less suitable for the task of NFR
classification.

146 quantum natural language representations for nfrs classification

Table 6.2: Comparison of selected word embedding techniques with ML models.

Table 6.3: Best models based on TF-IDF.
Model Accuracy F1-score

Random Forest Classifier 0.39 0.36

Nearest Centroid 0.36 0.36

Gaussian NB 0.34 0.33

Table 6.4: Test on hold out set of Ran-
dom Forest Classifier.

Class Precision Recall F1-score

O 0.23 0.55 0.32

PE 0.12 0.09 0.11

SE 0.00 0.00 0.00

US 0.20 0.09 0.13

Average 0.14 0.18 0.14

Table 6.5: Best models based on BERT.
Model Accuracy F1-score

Ridge Classifier CV 0.55 0.54

NuSVC 0.52 0.53

Ridge Classifier 0.50 0.49

Table 6.6: Test on hold out set of Ridge
Classifier CV.

Class Precision Recall F1-score

O 0.41 0.64 0.50

PE 0.57 0.36 0.44

SE 0.31 0.36 0.33

US 0.29 0.18 0.22

Average 0.39 0.39 0.38

Table 6.7: Best models based on fast-
Text.

Model Accuracy F1-score

SVC 0.66 0.66

Gaussian NB 0.61 0.61

Extra Tree Classifier 0.59 0.59

Table 6.8: Test on hold out set of SVC.

Class Precision Recall F1-score

O 0.67 0.73 0.70

PE 0.73 0.73 0.73

SE 0.78 0.64 0.70

US 0.58 0.64 0.61

Average 0.69 0.68 0.68

Table 6.9: Best models based on
Word2vec.

Model Accuracy F1-score

Random Forest Classifier 0.77 0.78

Logistic Regression 0.77 0.77

Passive Aggressive Classifier 0.77 0.77

Table 6.10: Test on hold out set of Ran-
dom Forest Classifier.

Class Precision Recall F1-score

O 0.75 0.82 0.78

PE 0.85 1.00 0.92

SE 0.78 0.64 0.70

US 0.90 0.82 0.86

Average 0.82 0.82 0.81

Table 6.11: Best models based on GloVe.
Model Accuracy F1-score

NuSVC 0.82 0.82

SVC 0.80 0.80

Random Forest Classifier 0.80 0.79

Table 6.12: Test on hold out set of
NuSVC.

Class Precision Recall F1-score

O 0.82 0.82 0.82

PE 0.79 1.00 0.88

SE 0.89 0.73 0.80

US 0.90 0.82 0.86

Average 0.85 0.84 0.84

6.4 analysis of the results 147

6.4.2 RQN f r2. How effectively can a basic model classify non-functional
requirements when represented as string diagrams and parameterised
as tensor networks?

To answer RQN f r2 we analyzed the performance of classical Pytorch
models using Bobcat-based and Cups-based tensor networks for
classifying NFRs. The training process involved two separate setups,
one using Binary Cross-Entropy (BCE) loss and the other using Cross
Entropy (CE) loss.

Firstly, let’s analyze the Bobcat-based experiment. The model’s
training and validation performance, shown in Figure 6.20 over the
course of 43 epochs using BCE loss show substantial improvement
in training metrics while validation metrics stabilize. During Epoch
1, the training accuracy was 0.23, with an F1-score of 0.52, and
by Epoch 10, training accuracy had increased to 0.97, and the F1-
score had reached 0.96. However, the validation accuracy remains at
around 0.27, and the validation F1-scores hovered between 0.25 and
0.36 during the entire training period. The early stopping criterion
is triggered at Epoch 43, selecting the best model at epoch 20 and
suggesting that further training would likely result in overfitting.

After training, we test the model on a hold-out dataset, obtaining
the results shown in Table 6.14. A class-wise performance revealed
that class (O) achieved the best precision and recall, with an F1-score
of 0.35.

Using Cross Entropy (CE) loss, the training results (Figure 6.21)
show a similar trend to the BCE training setup, with better training
metrics but a slower convergence for validation metrics. During
Epoch 1, the training accuracy started at 0.23, and by Epoch 10, it
increased to 0.98. The validation accuracy stabilize around 0.36, with
an F1-score in the 0.34 to 0.36 range by Epoch 10. Early stopping was
triggered at Epoch 24, with the model reaching its peak performance
at Epoch 8. We test the best model on the hold-out set, producing the
results shown in Table 6.15. Although the overall accuracy is low, the
CE-based model shows a slight improvement in class 0 predictions,
but the other classes, particularly usability class, still shows weak
precision and recall.

148 quantum natural language representations for nfrs classification

Figure 6.20: Performance in training with BCE on training set (left) and
validation set (right).

Figure 6.21: Performance in training with CE on training set (left) and
validation set (right).

Figure 6.22: Performance during training with Bobcat-based tensor net-
works.

6.4 analysis of the results 149

Figure 6.23: Performance in training with BCE on training set (left) and
validation set (right).

Figure 6.24: Performance in training with CE on training set (left) and
validation set (right).

Figure 6.25: Performance during training with Cups-based tensor net-
works.

150 quantum natural language representations for nfrs classification

Table 6.13: Comparison of Pytorch models trained on Bobcat-based tensor net-
works.

Table 6.14: Results using BCE with Log-
its Loss during training and
test on hold out set.

Class Precision Recall F1-score

O 0.31 0.40 0.35

PE 0.22 0.18 0.20

SE 0.20 0.18 0.19

US 0.09 0.09 0.09

Average 0.21 0.21 0.21

Table 6.15: Results using CE Loss dur-
ing training
and test on hold out set.

Class Precision Recall F1-score

O 0.40 0.60 0.48

PE 0.11 0.09 0.10

SE 0.18 0.18 0.18

US 0.00 0.00 0.00

Average 0.17 0.22 0.19

During training on Cups-based tensor networks with the BCE loss,
the model shows notable improvements across the first few epochs
but begins to overfit as validation metrics stabilize, as shown in Fig-
ure 6.23. At Epoch 1, results are modest, with a training Accuracy of
0.23 and an F1-score of 0.56. The validation accuracy is 0.25, with a
lower F1-score of 0.24. At Epoch 22 the best model is identified, with
training accuracy peaking at 0.98 and an F1-score of 0.98. Validation
accuracy is 0.36, with an F1-score of 0.36, signaling limited general-
ization capacity. Early stopping is triggered, and this model is saved
for evaluation on the hold-out set. This model is evaluated on the
hold-out set, yielding the results displayed in Table 6.17. Again, the
model achieves the best performance in operability class, while on
other classes it shows relatively lower results, by reaching an average
F1-score of 0.23, indicating moderate performance across the classes.

For the experiments using CE loss, the Pytorch model demonstrates
modest initial training performance but faces challenges in achieving
generalization, as seen in the validation performance in Figure 6.24.
At Epoch 1 training accuracy is 0.24 with an F1-score of 0.59, while
the validation accuracy is 0.20 and the F1-score is 0.44. At Epoch 14

the model is saved as the best-performing model, with 0.97 training
accuracy and an F1-score of 0.96. Validation accuracy is 0.34, and the
F1-score is 0.34. Early stopping is triggered at this point. The best CE
model is evaluated on the hold-out set, providing the results shown
in Table 6.18. Also in this case, on the operability class, the model
has the highest F1-score at 0.56, followed by security class with 0.50.

6.4 analysis of the results 151

Table 6.16: Comparison of Pytorch models trained on Cups-based tensor
networks.

Table 6.17: Results using Binary
Cross Entropy with
Logits Loss during
training and test on hold
out set.

Class Precision Recall F1-score

O 0.30 0.27 0.29

PE 0.18 0.27 0.21

SE 0.25 0.18 0.21

US 0.22 0.18 0.20

Average 0.24 0.23 0.23

Table 6.18: Results using Cross En-
tropy Loss during train-
ing and test on hold out
set.

Class Precision Recall F1-score

O 0.71 0.45 0.56

PE 0.31 0.36 0.33

SE 0.46 0.55 0.50

US 0.27 0.27 0.27

Average 0.44 0.41 0.42

ø Summary of the Results. The experiments using Bocat-based
and Cups-based tensor networks for NFRs classification show
moderate effectiveness. The best results are achieved in Cups-
based experiment with Cross Entropy Loss, reaching a precision
of 0.44, a recall of 0.41 and F1-score of 0.42. The best-performing
class across all models is Operability. Overall, while tensor net-
works demonstrate promise, further optimization is needed to
improve generalization and performance across all NFR classes.

6.4.3 RQN f r3. How effectively can quantum models classify non-functional
requirements when represented as string diagrams and parameterised
as quantum circuits?

As anticipated in Section 6.3.1, to answer RQN f r3 we perform two
experiments: (a) non-shot based experiment and (b) a noisy shot
based experiment (see Figure 6.2). In the experiment (a), the results
we get during train are shown in Figure 6.28.

In particular, the results of training a Numpy model based on
quantum circuits generated from the Bobcat parser show moderate
performance with consistent challenges across the epochs (Figure
6.26). In the initial epoch, the model starts achieving a training
accuracy of 0.29 and a validation accuracy of 0.23.

152 quantum natural language representations for nfrs classification

Figure 6.26: Performance with Bobcat-based quantum circuits on training
set (left) and validation set (right).

Figure 6.27: Performance with Cups-based quantum circuits on training set
(left) and validation set (right).

Figure 6.28: Performance during training with Numpy model on quantum
circuits.

6.4 analysis of the results 153

The corresponding F1-scores of 0.23 for training and 0.23 for val-
idation indicate an underfitting trend. Over the next few epochs,
the model’s performance fluctuates slightly, with training accuracy
peaking at around 0.31 in epoch 7, while validation accuracy remains
stagnant at 0.23. The precision and recall metrics similarly reflect the
model’s struggle to generalize. For instance, the precision for valida-
tion oscillates around the 0.24-0.26 range across most epochs, while
recall stays relatively stable at 0.23, with minor improvements. The
model continues to suffer from low F1-scores, indicating it struggles
with both overfitting and generalization issues throughout training.

The best model, selected after the first epoch, is applied to the
hold-out set, with the results shown in Table 6.20. The evaluation
results indicate a hold-out accuracy of 0.30, which is marginally
better than the validation accuracy but still quite low. The precision
(0.33) and recall (0.30) suggest that while the model can make some
correct predictions, it perform consistently across all classes. Indeed,
the F1-scores between classes fluctuate in range 0.24-0.35, indicating
that some features help the model to distinguish between classes.

The training results from the Cups-based quantum circuits experi-
ment (Figure 6.27) exhibit fluctuating performance across the epochs,
with gradual improvement in validation metrics but still limited
classification effectiveness. Epoch 1 starts with a training accuracy
of 0.29 and validation accuracy of 0.36 reflect the model’s initial
struggle to classify the non-functional requirements effectively. The
F1-scores are 0.22 (training) and 0.29 (validation), indicating poor
generalization. Over next epochs, the training precision and recall
fluctuate, showing modest increases, especially by Epoch 8, where
validation accuracy reaches 0.39, with an F1-score of 0.31. However,
the training precision remains low throughout, and the model shows
difficulties in learning patterns effectively from the dataset. Once
the best model (saved at Epoch 8) is applied to the hold-out set, the
overall performance remains modest (Table 6.21). Operability class
performs the best in terms of both recall and F1-score, though pre-
cision remains moderate. In Performance class, the model struggles
with detecting this, resulting in a low recall and F1-score, while recall
is higher in Security class than Performance class.

154 quantum natural language representations for nfrs classification

Table 6.19: Comparison of Numpy models trained on quantum circuits.

Table 6.20: Results using Numpy mod-
els with train on
Bobcat-based quantum cir-
cuits and test on hold out
set.

Class Precision Recall F1-score

O 0.22 0.40 0.29

PE 0.43 0.27 0.33

SE 0.33 0.18 0.24

US 0.33 0.36 0.35

Average 0.33 0.30 0.30

Table 6.21: Results using using Numpy
models with train on
Cups-based quantum cir-
cuits and test on hold out
set.

Class Precision Recall F1-score

O 0.30 0.55 0.39

PE 0.25 0.09 0.13

SE 0.25 0.45 0.32

US 0.00 0.00 0.00

Average 0.20 0.27 0.21

In the (b) shot-based experiment, we train the Tket quantum model
using quantum circuits created from both the Bobcat parser and
Cups Reader and executed on the AER Backend. The results of Tket
training on Bobcat-based quantum circuits demonstrate variability
in model performance across different epochs, with generally low
precision, recall, and F1-scores, indicating limited learning from
the data (Figure 6.29). Epoch 1 starts with a low training accuracy
of 0.25 and validation accuracy of 0.27. The initial F1-scores are
0.17 (training) and 0.19 (validation), showing that the model is not
learning effectively. As the epochs progress, the training precision
and recall fluctuate without significant improvement. Epoch 11 shows
the best performance with training accuracy of 0.30 and validation
accuracy of 0.32, alongside an F1-score of 0.24 for the validation set.
The model stabilizes by this epoch, but performance remains limited.
After applying the best model (from Epoch 11) to the hold-out set,
the overall performance remains weak, as can be seen in Table 6.23.
The model performs best on Operability class, with relatively high
recall but low precision. On the Performance class the results are
moderate, with low recall limiting the model’s effectiveness. The
remaining classes both exhibit 0.00 on precision, recall, and F1-scores,
indicating the model’s complete inability to classify these classes.

The same experiment conducted using quantum circuits created
from the Cups Reader also demonstrate challenges in learning, with
low precision, recall, and F1-scores across most epochs, indicating

6.4 analysis of the results 155

Figure 6.29: Performance with Bobcat-based quantum circuits on training
set (left) and validation set (right).

Figure 6.30: Performance with Cups-based quantum circuits on training set
(left) and validation set (right).

Figure 6.31: Performance during training with Tket model on quantum
circuits.

156 quantum natural language representations for nfrs classification

that the model struggles to classify non-functional requirements
effectively (Figure 6.30). Epoch 1 starts with poor performance in
both precision and recall. Training accuracy is 0.20, while validation
accuracy is 0.25, showing that the model is struggling to generalize
from the data. The F1-score for training is 0.13 and 0.17 for validation.
As training continues, precision and recall remain inconsistent. The
best training performance is seen in Epoch 9, with training precision
reaching 0.27 and F1-scores of 0.24 on the validation set, reflecting
moderate improvement in some classes. Early stopping is triggered
after Epoch 20, as the model fails to make significant gains in perfor-
mance, and the best model from Epoch 9 is saved. After applying the
best model from Epoch 9 to the hold-out set, the performance varies
between classes, with the Operability class achieving 0.32 precision
and 0.64 recall, but Performance and Usability class exhibit 0.00 pre-
cision, recall, and F1-scores, showing that the model fails to detect
certain classes.

Table 6.22: Comparison of Tket models trained on quantum circuits.

Table 6.23: Results using Tket model
with train on Bobcat-based
quantum circuits and test on
hold out set.

Class Precision Recall F1-score

O 0.23 0.70 0.34

PE 0.40 0.18 0.25

SE 0.00 0.00 0.00

US 0.00 0.00 0.00

Average 0.16 0.22 0.15

Table 6.24: Results using Tket model
with train on Cups-based
quantum circuits and test on
hold out set.

Class Precision Recall F1-score

O 0.32 0.64 0.42

PE 0.00 0.00 0.00

SE 0.25 0.45 0.32

US 0.00 0.00 0.00

Average 0.14 0.27 0.19

6.5 discussion and research roadmap 157

ø Summary of the Results. Across all four experiments, the
quantum models based on both Bobcat Parser and Cups Reader
demonstrate limited effectiveness in classifying non-functional re-
quirements. Both the shot-based and non-shot-based approaches
encountered significant challenges in learning from the data, with
low accuracy and F1-scores across the results. The best overall
performance is observed in the non-shot-based Bobcat experi-
ment, where the model achieved 0.30 in F1-score. However, this
performance demonstrate limited learning capacity, and further
optimization of quantum algorithms and models is needed before
quantum circuits can be effectively applied to this domain.

6.5 discussion and research roadmap

In this study, we explore three distinct computational approaches to
classifying NFRs: shallow ML algorithms using word embeddings,
tensor network-based models, and quantum circuit-based models.
Each approach provides unique insights and raises important consid-
erations regarding their strengths and limitations in NFR classifica-
tion tasks. In the following, we discuss the findings coming from the
analyses performed to answer the formulated research questions and
compare the efficacy of the employed approaches in light of their
respective methodologies and results.

6.5.1 Lesson learned

The results of RQN f r1 inform us that the combination of shallow ML
algorithms with word embeddings result in very high performing ML
models, classifying unseen non-functional requirements during the
training phase with precision, recall, and f1-score metrics exceeding
0.80. In particular, GloVe and Word2Vec are predominant, with the
former performing slightly better, although statistical tests should be
conducted to confirm the significant difference. However, our focus is
not to understand which combination is the most effective for the task
at hand, but to understand where the new solutions offered by both

158 quantum natural language representations for nfrs classification

textual representation in string diagrams and quantum computation
rank. Thus, while on the one hand we have combinations of ML
algorithms with word embedding that reach F1-score over 0.80, on
the other hand we have combinations that do not reach 0.40 of F1-
score in an attempt to classify non-functional requirements that do
not belong to the training sets, as in the case of TF-IDF (where
performance is below 0.20) and BERT (where performance is around
0.38). These results suggest that word embeddings techniques based
on word frequency (TF-IDF) and techniques that generate contextual
embeddings (BERT) have difficulties in the classification task as we
set it up.

¬ In summary, RQN f r1 results differentiate statistical embed-
dings, such as GloVE, Word2vec, FastText, which consider words
independently of context, from embeddings based on word fre-
quency, such as TF-IDF, and from contextual embeddings, such
as BERT. In particular, statistical embeddings achieve more than
satisfactory results, while the rest have difficulties, due to both
the volume of the data under consideration and the preprocessing
steps used during the study.

As a first exploration in representing requirements in string dia-
grams, we conducted experiments exploiting Bobcat Parser and Cups
Reader. This choice is due to the fact that the former is a syntax-based
model and the latter is a word sequence-based model. Specifically,
Bobcat Parser is a traditional symbolic model focused on syntax
and grammar, used in rule-based NL tasks. Cups Reader is a model
inspired on Quantum NLP since it aims at the representation of
language as a network of tensors that can be easily manipulated in
quantum computational frameworks.

Experimentation results exploited to answer RQN f r2 suggest that
the representation via Cups Reader performs better than Bobcat
Parser, especially using Cross Entropy as loss function in PyTorch
model training (Table 6.18). Note that for all our experiments we used
the default version of the model, which simply exploits the tensors
contraction to provide the output. This implies several considerations.
First, we can evaluate the results obtained from simply contracting

6.5 discussion and research roadmap 159

the tensors obtained from Bobcat Parser and Cups Reader, allow-
ing a “direct” comparison between the different representations in
string diagrams of the requirements. Next, since the basic model is a
simple contraction operation, we can consider this model not very
different from shallow ML models that are still based on more or
less complex mathematical functions, allowing us to compare with
the results obtained in response to RQN f r1. Finally, since the model
is based on PyTorch, it is possible to build from it more complex
neural networks that could positively or negatively affect the final
performance, in addition to the possibility to load the weights and
symbols from a training checkpoint, allowing for an incremental
learning implementation.

As a matter of fact, in the experimentation to answer RQN f r1

we evaluated the efficiency of different ML algorithms, while for
RQN f r2, exploiting the basic model, we did not obtain astonishing
performance. However, the results obtained from Cups Reader (Table
6.18) are better in 3 classes (Operability, Security, and Usability) out
of 4 than the combination of BERT and shallow ML (Table 6.6), which
presents better results only in identifying the Performance class.

¬ Although the results may be due to the case at hand, as with
other requirements or with other configurations for tensor net-
works the result may have been different, the representation in
string diagrams is comparable with contextual embeddings tech-
niques and performs better than techniques that consider words
frequencies.

The representation of requirements in string diagrams opens the
way for comparison with the results obtained in the experiment car-
ried out to answer RQN f r3, in which we represent string diagrams
in quantum circuits. Clearly, here the factors influencing the require-
ments classification are even more numerous than in the previous
case. In fact, the parameterization of the tensor diagrams in the ex-
perimentation performed to answer RQN f r2 was done through the
definition of a sentence and noun mapping within the requirements
by assigning dimension 4 to each, since 4 are the possible classes
to which each belongs. However, this is also a questionable design

160 quantum natural language representations for nfrs classification

choice, as we could have defined larger or smaller dimensions and
modified the PyTorch model accordingly to shape the output of the
neural network in 4 possible classes.

In parameterizing the diagrams in quantum circuits the situation
becomes even more “complicated”. In addition to defining the num-
ber of qubits to be assigned to each sentence and noun, one must also
define the number of Hadamard gates layers (n_layer parameter) and
the number of rotations assigned to each qubit. The choice of these
parameters influences the transformation of string diagrams into
quantum circuits, which may consequently be more or less suitable
for the problem under consideration.

Considering these factors, additional choices are made in the sim-
ulation of quantum environments on classical hardware. First of all,
the Numpy model we use in the non-shot based simulation converts
quantum circuits into tensor networks, which on the one hand allows
a comparison with the experimentation done in RQN f r2 since both
are based on tensor network, and on the other hand is a bit counter-
intuitive if one thinks of wanting to exploit the potential of quantum
computation for the task of requirements classification.

As for the shot-based simulation, we strongly believe that the
configuration of the backend used is another very influencing factor.
Indeed, out of the choice of which backend to use, we have to define
the compilation pass and the number of shots. The compilation pass
refers to the process of transforming, optimizing, and preparing a
quantum circuit to be executed on a specific backend. Shots refer to
the number of times a quantum circuit is executed or simulated. In
quantum computing, the results of measuring a qubit are probabilistic
rather than deterministic, meaning each run of the circuit can yield
different measurement outcomes. All these considerations indicate
that the results we obtained in our experimentation may not only
be the result of chance, but may also be a consequence of an ideal
setup for the task under consideration. In addition, while in the
setup of experiments based on ML and word embeddings there
may be random components that influence the results obtained, in
the quantum case the probabilistic components multiply, making it
almost impossible to think of testing them all and understanding
which ones influence the results more than others.

6.5 discussion and research roadmap 161

Analyzing the results for RQN f r3, obtained using the same setup
adopted for RQN f r1 and RQN f r2 (i.e. same dataset, same task, same
metrics, and same hold out validation), we can conclude that in
both types of quantum environment simulation the results leave
something to be desired. However, despite the probabilistic nature
of these simulations, in some cases the results are shown to be
comparable to those obtained in the other experiments. In detail,
only in the non-shot based simulation we have obtained a model
capable of recognizing all types of NFRs by exploiting Bobcat-based
representation (Table 6.20), albeit with relatively poor performance.
In the remaining cases, there are classes that fail to be identified. In
the shot-based simulation, the Operability class exhibits high recall
in both cases, even better than the non-shot based simulation, but
the remaining results on the other classes are really scarce.

When comparing the best results obtained for RQN f r2 (Table 6.18)
with the best results for RQN f r3 (Table 6.20), the latter perform
relatively worse, with a deviation of 0.10 on F1-score. However,
although they are not the best, they are still better than the results
obtained using TF-IDF and ML techniques in combination.

¬ In the non-shot based simulation, Numpy model converts
quantum circuits into tensor networks, aligning it with RQN f r2’s
approach, which also uses tensor networks. However, this may
seem counter-intuitive given that quantum computation’s po-
tential is not fully leveraged. In shot-based simulations, circuits
configuration, compilation passes, and the number of shots play
critical roles in influencing outcomes. While the results for RQN f r3

do not outperform those of RQN f r2, they show comparability, es-
pecially in identifying specific NFR classes. However, overall per-
formance is lower than the tensor-based models in RQN f r2, with
a 0.10 F1-score deviation, though still better than the combination
of TF-IDF and ML methods.

162 quantum natural language representations for nfrs classification

6.5.2 Future Research Directions

Based on the methodology we adopted, in the following we want to
share how researchers can organize the future directions for research
in quantum-based non-functional requirements (NFR) classification,
which is graphically summarized in Figure 6.32.

Task Definition

Binary Classification Multi Label Classification

More instances Different choices
in preprocessing

Instances from
same project

Different standard
for requirement

Stairs Reader Spiders Reader Tree Reader Custom Tree Reader

Rewriter Remove Swaps Rewriter

MPS Ansatz Spider Ansatz Sim15 Ansatz Sim14 Ansatz Strongly Entangling
Ansatz

Custom Circuit
Ansatz

Custom
PyTorch model PennyLane model Torch Quantum

model

Cross Validation Grid Search for
Hyper-parameters

Different simulation
environment configuration

Different Loss
Function or Optimiser Quantum Hardware

Dataset & Preprocessing

Parsing & Encoding

Rewriting

Parameterisation

Model

Training & Testing

Figure 6.32: Roadmap for unexplored application of Quantum NLP for the
NFRs classification task.

Firstly, future work could expand on task complexity by exper-
imenting with binary or multi-label classification rather than the
multi-class classification approach used in this work. This would

6.5 discussion and research roadmap 163

enable a more nuanced understanding of the interdependencies be-
tween NFR categories, which often overlap in real-world applications.

An important direction for future research is expanding the dataset
both in size and diversity. Including more instances from various
software projects or domains would enhance the robustness of the
models, potentially leading to better generalization. Additionally,
expanding to cross-project datasets would provide more generalized
models capable of adapting to different development environments
and standards for requirements, pushing beyond single-project or
mixed-projects instance sets. Alongside this, diversifying prepro-
cessing choices can improve the quality of feature representation.
Exploring other vectorization methods or preprocessing steps like
advanced text normalization, domain-specific term extraction, or
data augmentation could improve classification performance. One
could also explore different standards for requirements definitions,
expanding beyond the current scope to incorporate more complex
requirement taxonomies or standards, such as User Stories.

In future work, a wider variety of parsers and encoders could be
explored. This might include leveraging advanced readers such as
the Stairs Reader, Spiders Reader, or Tree Reader, and even custom
parsers for requirement extraction and encoding. Such advancements
could improve the accuracy of initial representations, a crucial factor
when inputting data into quantum circuits or when parameterising
such tensor networks. Exploring new quantum or classical encoding
strategies may help align the peculiarities of requirements data with
quantum computing’s strengths.

In the rewriting phase, new strategies could be explored to opti-
mize the string diagrams. While some Rewriters helped us to simplify
string diagrams, future work could investigate other rewriting tech-
niques or even custom rewriters that better optimize them to obtain
simplified quantum circuits for specific backends. This would mini-
mize noise and errors during quantum operations, leading to more
accurate results. More sophisticated quantum rewriting algorithms
can also help circuits to execute more efficiently on simulators or
actual quantum hardware.

One area of research that offers significant potential for improve-
ment is circuit parameterization. Beyond the other available ansätze

164 quantum natural language representations for nfrs classification

such as MPS and Spider ansatz, and Sim14, Sim15 and Strongly En-
tangled ansatz for quantum circuits, future work could experiment
with custom circuit ansätze tailored for specific classes of NFRs or
computational goals. For example, designing ansätze that encode
NFR properties more efficiently could unlock new ways of achieving
state-of-the-art performance in quantum simulations.

Expanding the choice of models is a clear future direction. In addi-
tion to the PyTorch models explored in this work, other frameworks
such as PennyLane or Torch Quantum offer promising avenues for
hybrid quantum-classical architectures. Future models might also
incorporate fully custom models, which are fine-tuned to the par-
ticularities of requirement classification tasks. The development of
more quantum-native models could push the boundaries of what
quantum-enhanced learning can achieve.

Lastly, in the domain of training and testing, future studies should
explore cross-validation techniques, particularly on larger datasets,
to ensure that models generalize well to unseen data. Implementing
grid searches for hyperparameter tuning can also lead to better-
performing models. Additionally, configuring the quantum environ-
ment more thoroughly, including different compilation passes and
shot configurations, could result in a better understanding of the ef-
fects that quantum probabilism has on performance. Moving beyond
simulation, the ultimate goal would be running these models on ac-
tual quantum hardware, which could bring entirely new insights into
the viability of quantum approaches for NFR classification. Further-
more, future experiments might examine alternative loss functions
and optimizers, as different configurations could yield performance
improvements.

These directions highlight the numerous potential for evolving the
work presented, with a focus on expanding the dataset, exploring
new models, parameterization techniques, and leveraging custom
quantum architectures. By integrating these future advancements,
the field can continue to push toward efficient, scalable, and accurate
quantum-based solutions for NFRs classification. The continual re-
finement of task definition, model choices, and training strategies will
shape the future of this intersection between quantum computing
and software engineering.

6.6 threats to validity 165

6.6 threats to validity

This section discusses the primary threats to the validity of our
study, particularly focusing on the generalizability, repeatability, and
accuracy of the methods and tools used.

Construct Validity. Construct validity pertains to how well the
evaluation methods measure the concepts they are intended to as-
sess, ensuring that the observations and inferences drawn from the
study are appropriate [28]. In this work, we employed metrics from
the Scikit-learn library, including the accuracy_score5 for Accu-
racy, precision_score6 for Precision, recall_score7 for Recall, and
f1_score8 for F1-score.

Although relying on a single tool could introduce some concerns,
especially in ML contexts, these metrics are based on mathematical
formulas, making them independent of the specific tool used. Addi-
tionally, these metrics were chosen because they are widely used in
prior studies on NFR detection, enabling meaningful comparisons
with previous and further researches.

Internal Validity. Internal validity is concerned with the degree
to which the results can be attributed to the interventions applied,
rather than other factors [28]. In our study, we assume comparability
among the models because they are derived from the same libraries,
such as Scikit-learn in RQN f r1, and lambeq in RQN f r2 and RQN f r3.
Since causality could pose a threat to internal validity, we are aware
that the results are the product of chance, mainly because the choices
made in the course of the experiments are varied, starting from the
preprocessing of the dataset to the selection of models to be adopted
in the different scenarios. Further experiments are needed, and to
support that we design a possible road map in Section 4.5 to help
and stimulate the research in the field.

External Validity. External validity relates to the generalizability
and reproducibility of the study’s findings [28], which determines
the applicability of our results in real-world scenarios.

5 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

6 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

166 quantum natural language representations for nfrs classification

Our approach utilizes Python-based models, specifically those im-
plemented using available Python libraries. The methods employed
in this study may not be directly transferable to other programming
languages, and since we do not apply validation techniques focused
on generalizability like cross validation, the external validity may be
dependent on the specific training data. However, the datasets used
span over various projects within software specifications, supporting
the applicability of the approach in different industrial settings. To
facilitate the replication of our study, all tools, scripts, and data have
been made publicly available [7].

For our experiments, we utilized the NVIDIA L4 GPU available
on Google Colab, which is based on the Ada Lovelace architecture.
The L4 GPU is optimized for deep learning tasks, offering 24 GB of
memory and 4th-generation Tensor Cores. This setup provided the
necessary computational power to efficiently train and evaluate our
models across different ML- and quantum-based approaches.

Conclusion Validity. Conclusion validity refers to the soundness
of the inferences drawn from the data and the reliability of the
conclusions based on the employed metrics [28].

We recognize that the conclusions regarding the effectiveness of the
ML models in our RQs are based on metrics like Precision, Recall and
so on. We acknowledge that these metrics alone may not capture the
full performance potential of the models. Additional experimentation
and statistical tests could provide a deeper insight into the model’s
efficacy, thereby refining the conclusions presented in this study.

PA RT III

PA R A D I S O

“La gloria di colui che tutto move
per l’universo penetra, e risplende,
in una parte più e meno altrove.

Nel ciel che più de la sua luce prende
fu’ io, e vidi cose che ridire

né sa né può chi di là sù discende;

perché appressando sé al suo disire,
nostro intelletto si profonda tanto,
che dietro la memoria non può ire.

Veramente quant’io del regno santo
ne la mia mente potei far tesoro,
sarà ora materia del mio canto.”

Dante Alighieri, Paradiso, Canto I, vv. 1 - 12.

7
D I S C U S S I O N A N D R E S E A R C H D I R E C T I O N S

This chapter first answers the three high-level research questions
(RQA– RQC) presented in Chapter 1. Then, it further elaborates on
the findings observed in the studies presented in Chapters 3, 4, 5, and
6, reflecting on the new research gaps that originated from them and
calling for contributions and novel research artifacts to improve the
detection of NFRs. This chapter discusses different aspects, grouped
into three thematic areas. Each area calls for (1) further empirical
investigation on which aspects of language structure improve the
performance of the different solutions, (2) analysis of the features
that allow hardware resources to face data scarcity, and (3) the intro-
duction of novel automated techniques to deal with the contextual
information hidden in requirements.

7.1 answers to research questions

Û RQA To what extent can analyzing the structure of requirement
language enhance the detection of NFRs?

Chapters 3 [J1] and 6 [J4] analyzed several key characteristics con-
cerning the language structure, looking at how the requirements
are syntactically and semantically written. In particular, the works
focused on the relevance of considering entities, parts of speech and
dependencies as features for ML and DL solutions in detecting pri-
vacy concerns (Chapter 3) [J1] and the impact that different require-
ment representations may have in inform ML algorithm and neural
networks (Chapter 6) [J4]. Indeed, if in the former case (Chapter 3)
such features lead to optimal performance and better solution when
compared to other classical approaches, in the latter case (Chapter 6)
we observe that the way requirements are represented significantly
impact on the accuracy of the models.

169

170 discussion and research directions

The results obtained inform us that such novel representations, i.e
string diagrams, may be better than (1) statistical lexical frequencies
techniques like TF-IDF and (2) contextual embedding like BERT, but
worse than pre-trained vector solutions like Word2Vec, GloVe and
FastText. However, this is somehow expected because pre-trained
vector extract knowledge from larger corpora of text, instead string
diagrams are based just on texts composing requirements, as in the
case of TF-IDF.

¬ Answer to RQA. Analyzing the structure of requirement lan-
guage significantly enhances the detection of NFRs by leveraging
semantic and syntactic patterns. Indeed, DL methods, like CNNs,
outperform traditional ML by modeling requirement based on
their structures and semantic. However, the choice of features is
critical; considering solely the lexical characteristics led to worst
performance. Furthermore, while tensor networks and quantum
methods show potential for deeper structural modeling, their
limited effectiveness when compared to advanced solution based
on word embedder highlights the need for further optimization
and refinement, even though the representation in string dia-
grams is comparable with contextual embeddings techniques and
performs better than techniques that consider words frequencies.

Û RQB How much can the availability of hardware resources
counterbalance the data scarcity?

Chapters 3 [J1], 5 [J3] and 6 [J4] explore how the hardware re-
sources improves the NFRs detection in comparison to traditional
ML solutions when dealing with data scarcity. In particular, Chapters
3 [J1] highlight how resources such as GPUs and TPUs facilitate the
training of DL models by enabling more complex architectures (e.g.,
CNNs and Transfer Learning models) to process limited datasets
effectively. Then, the work on security in Chapter 5 [J3] highlights
that while hardware plays a critical role in enabling pre-trained trans-
former models to be fine-tuned on small datasets, the quality of
pre-training and the alignment of the pre-trained model’s knowledge
with the target domain are equally vital.

7.1 answers to research questions 171

Lastly, experiments in Chapter 6 [J4] using tensor networks and
quantum models, which inherently require significant computational
power, reveal that while hardware enables the exploration of ad-
vanced architectures, the models are still limited by the small dataset
size, suggesting that even powerful computational approaches cannot
fully overcome the challenges posed by unrepresentative data.

¬ Answer to RQB. The availability of robust hardware resources
significantly mitigates the challenges posed by data scarcity, but
its impact is closely tied to the methods employed and the avail-
ability of high-quality pre-trained models. Advanced hardware
enables the use of computationally intensive techniques, such
as Transfer Learning (e.g., PDTL for privacy detection) and pre-
trained transformer models like BERT (as demonstrated in the
security detection work), which are particularly adept at extract-
ing meaningful patterns from small datasets. However, while
hardware resources amplify the effectiveness of such advanced
methods, they cannot fully compensate for the absence of relevant
amount of data, as emphasized from the insights coming tensor
networks and quantum methods, as these methods struggled to
generalize despite being resource-intensive.

Û RQC To what extent can we introduce domain agnostic NLP-
based technologies and techniques?

Chapters 3 [J1], 4 [C3],5 [J3] and 6 [J4] provide an attempt of
the applicability of domain-agnostic NLP-based technologies and
techniques. In particular, Chapter 3 [J1] shows that by leveraging
pre-trained models, such as convolutional neural networks trained
on generalized text data, PDTL was able to achieve high performance
independently from the domain application of requirements. Chapter
4 emphasizes the critical role of domain detection in building a
recommender systems that address fairness concerns. While the
methods employed, such as NLP pipelines, were domain-agnostic to
some extent, the need for detecting domain-specific biases underlines
that domain awareness is essential for the meaningful application of
domain-agnostic methods.

172 discussion and research directions

Chapter 5 highlights the potential of pre-trained, domain-agnostic
transformer models for achieving high performance across domains.
BERT, trained on massive amounts of general-purpose text (i.e. CVE
and CWE descriptions, as well insecure code examples), exhibited
strong results in identifying security-related content. Lastly, Chapter
6 demonstrates that word embeddings like GloVe, Word2Vec, and
FastText significantly enhance model performance, even in data-
scarce settings. These embeddings, trained on large general-purpose
corpora, provided meaningful representations of words, enabling
improved classification of NFRs such as Operability and Usability in
multiclass classification context.

¬ Answer to RQC. Domain-agnostic NLP-based technologies
and techniques can be effectively introduced across diverse do-
mains to detect and classify NFRs, but their success depends on
a balanced integration of general-purpose models with domain-
specific adaptations. Pre-trained models like BERT, word embed-
dings like GloVe, Word2Vec and FastText, and techniques like
transfer learning demonstrate significant promise in generalizing
across domains, achieving high performance even in data-scarce
settings, even though adaptation remain critical for optimal per-
formance in specialized tasks.

7.2 findings of the research

Based on the answers to the research questions, the key findings of
the thesis can be articulated as follows.

Semantic and Syntactic Analysis Enhances NFRs Detection. Deep
Learning outperforms traditional ML. CNN-based methods demon-
strated their strength in capturing semantic and syntactic nuances
within requirement language, outperforming traditional ML ap-
proaches. These models excel in understanding contextual relation-
ships between words, which is essential for identifying NFRs, such as
privacy requirements, embedded within user stories (e.g., CNNNLP

achieved better accuracy than traditional models like Logistic Regres-
sion or Random Forest).

7.2 findings of the research 173

Here, feature selection is crucial: the results emphasize that the
choice of features is a deciding factor for detection accuracy. Lexical
features, such as privacy words, although intuitive, limit the model’s
performance when used in isolation.

This limitation arises from the inability to capture contextual and
structural relationships, which are pivotal for detection of NFRs.

On the other hand, emerging methods show mixed results: tensor
networks and quantum methods, designed to explore deeper linguis-
tic structures through mathematical abstractions (e.g., Bobcat Parser,
Cups Reader), exhibited only moderate success. These methods strug-
gled with generalization, especially when compared to contextual
embeddings like GloVe or Word2Vec. The findings indicate that while
these advanced methods have potential, they require optimization to
match the effectiveness of established NLP approaches.

ø NFR detection benefits immensely from leveraging both semantic and
syntactic structures, and solutions that combine contextual embeddings and
DL techniques provide the best results. However, advanced methods like
tensor networks and quantum approaches need substantial refinement before
they can be widely adopted.

Hardware Resources Amplify the Impact of Advanced Methods.
Advanced hardware resources, such as GPUs and TPUs, play a vital
role in supporting computationally intensive approaches like CNNs
and transformers, facilitating their implementation and usage. For
example, PDTL in privacy detection leveraged Transfer Learning
to achieve high accuracy even with small datasets by relying on
pre-trained CNN architectures.

In security detection, BERT — a domain-agnostic transformer
model — was fine-tuned on a small security-specific dataset. Hard-
ware resources allowed this fine-tuning process to be computationally
feasible, bridging the gap between general-purpose pre-trained mod-
els and domain-specific requirements.

This computational cost limits but not delete the issue of data
scarcity: while robust hardware enables the exploration of advanced
architectures, it cannot fully overcome the challenges of limited or
unrepresentative data. For example: tensor networks and quantum
methods, despite being resource-intensive, underperformed due to

174 discussion and research directions

their inability to generalize with small datasets. The success of Trans-
fer Learning and transformers like BERT underscores the importance
of pre-trained models that already encode meaningful patterns.

ø Hardware resources are a powerful enabler for addressing data scarcity,
but their effectiveness is contingent on the availability of high-quality pre-
trained models and the inherent capabilities of the employed methods. Com-
putational power alone cannot replace the need for representative datasets.

Domain-Agnostic NLP Techniques Require Adaptation. Domain-
agnostic pre-trained models, such as BERT and Transfer Learning
strategies, demonstrated strong results in NFR detection across di-
verse domains. For instance, PDTL for privacy detection effectively
leveraged generalized CNN architectures, achieving domain-agnostic
performance, while contextual embeddings like GloVe, Word2Vec,
and FastText significantly improved NFR classification, offering ro-
bust representations of words even in unseen contexts.

While domain-agnostic models are effective, their performance
can be significantly enhanced with domain-specific adaptations. For
example, fine-tuning BERT on security-specific datasets enabled it
to excel in identifying security-related requirements. Fairness detec-
tion required domain awareness to uncover domain-specific biases,
despite employing largely domain-agnostic NLP pipelines.

Domain-agnostic techniques provide scalability and adaptability
across multiple domains but are often complemented by domain-
specific enhancements for optimal results. The interplay between
these two approaches enables the efficient application of NLP tech-
nologies in specialized tasks.

ø Domain-agnostic NLP techniques form a scalable and versatile founda-
tion for NFR detection, but incorporating domain-specific adaptations is
critical for ensuring high performance.

The Potential and Limitations of Transfer Learning. Transfer Learn-
ing emerged as a standout strategy for addressing data scarcity. By
leveraging pre-trained models designed for related tasks, Transfer
Learning enabled the reuse of existing knowledge to build effective
models in new contexts. For instance, PDTL achieved superior perfor-
mance in privacy detection by combining pre-trained CNN models
with task-specific adaptations. Transfer Learning facilitates efficient

7.2 findings of the research 175

model development in domains with limited labeled data, reducing
the need for extensive, domain-specific datasets.

Its success in this thesis highlights its potential for scalability
across various NFR detection tasks. However, it is closely tied to the
quality and relevance of the pre-trained models used. Misaligned
pre-training or insufficient task-specific fine-tuning can hinder its
effectiveness, as seen in some domain-specific applications requiring
extensive customization.

ø Transfer Learning is a transformative approach for NFR detection, partic-
ularly in data-scarce settings. However, its success hinges on the availability
of high-quality pre-trained models and careful task-specific tuning.

Balancing Generalization and Specialization in NLP Applications.
General-purpose models, such as contextual embeddings and domain-
agnostic pipelines, demonstrated significant scalability and adapt-
ability. These approaches provide a strong foundation for tackling
diverse NFR detection challenges without the need for extensive
domain-specific data.

Despite the effectiveness of general-purpose models, specialized
tasks often require domain-specific adaptations. For example, fair-
ness detection relied on understanding domain-specific biases to
build effective recommender systems. Furthermore, security detec-
tion benefited from fine-tuning general-purpose transformers like
BERT on domain-specific datasets.

The findings suggest that the most effective strategies combine
domain-agnostic techniques with domain-specific adaptations. This
balance ensures scalability while addressing the unique characteris-
tics of specialized tasks.

Note that previous findings is primarily concerned with the appli-
cability and scalability of domain-agnostic methods across different
domains. This, instead, focuses on the trade-offs and challenges of
balancing general-purpose models (generalization) with task-specific
adaptations (specialization) to achieve optimal results.

ø The interplay between generalization and specialization is critical for
maximizing the potential of NLP-based technologies in NFR detection.
Combining the strengths of domain-agnostic models with task-specific fine-
tuning can enable robust and scalable solutions.

176 discussion and research directions

7.3 implications for researchers and practitioners

The findings from this thesis underline several implications for both
researchers and practitioners in the field of requirements engineering.
These implications highlight the potential of adopting advanced NLP-
based methods for detecting NFRs and point to areas of exploration
for future research and practical application.

7.3.1 For Researchers

The thesis findings present a fertile ground for advancing research in
NLP applications for NFR detection.

The success of deep learning methods like convolutional neural
networks (CNNs) emphasizes the need to delve deeper into sophis-
ticated linguistic modeling techniques. Hybrid neural architectures
that combine CNNs with sequential models, such as Long Short-Term
Memory (LSTM) networks or Transformers, represent an exciting
area of exploration. While CNNs excel at identifying local patterns
within text, LSTMs and Transformers can capture long-term depen-
dencies, enabling a more comprehensive analysis of requirement
language. For instance, researchers could investigate the benefits of
combining CNNs with Bidirectional LSTMs (BiLSTMs) or integrating
them with pre-trained Transformer architectures such as BERT. Such
architectures allow for a nuanced understanding of the contextual
and structural characteristics of requirements.

The application of contextual word embeddings, such as GloVe,
Word2Vec, and FastText, has demonstrated significant promise in
improving classification tasks. These embeddings create meaningful
vector representations of words based on their context within a cor-
pus, providing valuable insights into semantic relationships. Building
on this, researchers may explore embedding techniques that incorpo-
rate domain-specific nuances, such as domain-adapted versions of
BERT (e.g., SciBERT for scientific texts or FinBERT for financial data).
Additionally, multi-task learning can offer an innovative way to share
linguistic features across tasks like detecting privacy, fairness, and

7.3 implications for researchers and practitioners 177

security requirements, which could lead to better generalization in
data-scarce environments.

Graph-based approaches, like Graph Neural Networks (GNNs),
are another promising direction. These models can encode syntactic
dependencies and semantic relationships within a graph structure,
allowing for richer representation of requirements and their interde-
pendencies. For example, researchers might use Graph Convolutional
Networks (GCNs) to model subject-verb-object relationships or even
inter-requirement dependencies, thus offering insights into how re-
quirements influence one another.

The findings also highlight the importance of explainability in AI
models for requirements engineering. Techniques like SHAP (SHap-
ley Additive exPlanations) and LIME (Local Interpretable Model-
Agnostic Explanations) could provide stakeholders with clear justifi-
cations for the predictions made by these models. This is particularly
critical in domains like healthcare or finance, where decisions based
on NFRs must meet strict regulatory standards.

While such research directions focus on the works proposed in this
dissertation, we can also think about a wider pipelines exploiting
the approaches presented here. For example, in [224], we propose a
LLM-based solution to automatically generate requirements starting
from conversations between stakeholders and customers. Once such
requirements are consolidated, leveraging our approaches is possible
to understand which one may have NFR-related concerns and auto-
matically derive quality statements of the system to be developed.

Other ideas could be to take advantage of the approaches during
the maintainability of software. In [34], we examined the idea of the
automatic generation of the rationale for code changes. The results
are negative, since we were able to generate a meaningful motivations
only for ∼3% of commits. However, futuristically speaking, let’s think
about a solution that’s able to provide a rationale for code changes.
Starting from such motivations, we can leverage approaches that can
detect NFR to understand how those code changes may have affected
the qualities of the software.

178 discussion and research directions

7.3.2 For Practitioners

For practitioners, the findings of this thesis present immediate op-
portunities to improve the efficiency and accuracy of requirements
engineering processes. The implications are equally transformative.
The demonstrated effectiveness of Transfer Learning, as seen in the
PDTL model for privacy detection, suggests that organizations can
adopt pre-trained models to significantly reduce the effort and cost
associated with developing domain-specific solutions. These models,
fine-tuned on task-specific data, enable practitioners to achieve high
performance even with limited datasets. For example, a company de-
veloping software for healthcare could use a pre-trained NLP model
fine-tuned on privacy-related requirements, accelerating the identifi-
cation of critical NFRs. Modern computational infrastructures, such
as GPUs and TPUs, play a pivotal role in enabling the application of
computationally intensive NLP methods. By leveraging cloud-based
solutions, organizations can scale their computational capabilities
without heavy upfront investment. This accessibility allows smaller
teams to adopt state-of-the-art NLP models, democratizing advanced
requirements analysis techniques across industries. An example us-
age of such findings is indeed the web application developed [30], in
which the solution we implemented in [31] is exploited and represent
the core of the software able to alert requirement engineers regarding
privacy concerns into the requirements given as input.

Domain-agnostic NLP technologies offer practitioners a solution
for detecting NFRs across various applications. Tools like BERT,
trained on general-purpose corpora, can be adapted to identify se-
curity, privacy, and fairness requirements. However, the findings
underscore the importance of fine-tuning these models for domain-
specific contexts to achieve optimal performance. Organizations can
build shared repositories of fine-tuned models for different domains,
promoting collaboration and standardization across teams.

Interdisciplinary collaboration is another critical area where these
findings can drive change. Domain-agnostic tools provide a common
language for diverse stakeholders, bridging the gap between technical
teams and business analysts. For instance, NLP tools can analyze

7.3 implications for researchers and practitioners 179

user stories to identify NFRs that align with organizational goals,
facilitating more effective communication and decision-making.

The results related to fairness-aware NLP methods highlight the
ethical responsibilities of practitioners. By integrating fairness checks
into their development pipelines, organizations can ensure that soft-
ware aligns with ethical standards and avoids reinforcing biases. For
example, fairness-aware models can flag requirements that inadver-
tently marginalize certain user groups, enabling proactive mitigation.

Finally, the findings provide actionable strategies for adopting
scalable, domain-adaptable, and ethically responsible NLP solutions.
Together, these implications point to a future where NLP-driven
automation becomes part of requirements engineering, bridging the
gap between academic innovation and real-world application.

8
C O N C L U S I O N

The research presented in this dissertation has focused on advanc-
ing the automation of NFRs detection by leveraging state-of-the-art
NLP technologies and ML and DL techniques. Addressing critical
challenges in privacy, security, fairness, and performance, this thesis
has aimed to mitigate knowledge gaps in requirements engineering,
particularly concerning the implicit and abstract nature of NFRs.

The thesis introduced and validated a series of innovative method-
ologies. The work on privacy requirements demonstrated how Trans-
fer Learning models can enhance the detection of privacy-related
information in agile User Stories by combining syntactic and seman-
tic features with privacy lexicons. This approach not only improved
accuracy but also showcased the potential of pre-trained neural net-
works for domain adaptation. Similarly, the exploration of fairness
as a NFR revealed the importance of contextual awareness in recom-
mender systems, where domain-specific biases must be considered
to ensure ethical and fair software development.

The work on security requirements highlighted the significant ad-
vantages of employing pre-trained Transformer models like BERT,
which demonstrated strong domain independence and the ability to
generalize across different software contexts. This marks a major step
forward in automating the identification of security requirements
while ensuring scalability and adaptability. Finally, the investiga-
tion into Quantum Natural Language Processing (QNLP) for NFR
classification provided valuable insights into emerging technologies,
showing promising but limited potential in handling complex lin-
guistic structures, particularly when datasets are small.

This thesis has made substantial contributions to both academia
and industry. From an academic perspective, this research has demon-
strated the feasibility of leveraging NLP-based approaches for au-
tomated NFR detection while exploring the applicability of tech-
nologies such as QNLP. Additionally, by systematically evaluating

181

182 conclusion

multiple approaches across diverse NFRs, this work provides an
empirical foundation that future studies can build upon, particularly
in the intersection of AI and software engineering.

For industry practitioners, the findings serve as a blueprint for
integrating NLP-driven NFR detection mechanisms into software
development workflows. The demonstrated improvements in accu-
racy and efficiency across privacy, security, and fairness indicate
that organizations can adopt these techniques to enhance the early
identification and management of NFRs, reducing the costly design
flaws and compliance violations. Moreover, the research highlights
how domain-agnostic pre-trained models can be tailored for specific
organizational needs, making AI-driven requirement analysis more
accessible and adaptable.

During the research, several promising avenues were identified
but deemed out of scope due to time and feasibility constraints. One
example is the use of Named Entity Recognition (NER) for NFR anal-
ysis and elicitation. While traditional classification techniques proved
effective in detecting privacy, security, and fairness requirements,
NER-based approaches might have offered complementary insights,
as been demonstrated when analyzing NFRs such as privacy. Future
work could explore the comparative advantages of NER in other
contexts and/or NFRs and how it might be integrated into existing
NLP pipelines for improving requirement engineering. Additionally,
a deeper exploration into multi-modal NFR detection—incorporating
visual, structured, and unstructured data—could further enhance
automated requirement analysis. Given the increasing complexity of
software systems, combining textual analysis with structured meta-
data, diagrams, or user feedback could yield a more holistic approach
to NFR detection.

While significant progress has been made, the findings of this
thesis open several avenues for future research. These include further
optimization of QNLP models for real-world application, exploring
the integration of domain-specific knowledge into pre-trained trans-
formers, and investigating the ethical implications of automated NFR
detection systems in sensitive domains. Additionally, expanding NFR
datasets and enhancing their annotation quality remain critical steps
for improving the generalizability of these techniques.

conclusion 183

From another point view, practical studies involving real-world
software engineers could be conducted to assess the applicability
and usefulness of the proposed NFR classification approaches be-
yond traditional performance metrics. This could take the form of
controlled experiments or case studies, evaluating how practitioners
perceive the effectiveness, usability, and integration potential of these
methods in real software development workflows.

In conclusion, this dissertation advances the field of requirements
engineering by proposing automated, scalable, and adaptable ap-
proaches to NFR detection. By bridging gaps in existing methodolo-
gies and addressing emerging challenges, it paves the way for a new
generation of intelligent RE tools capable of supporting developers in
building high-quality, secure, and fair software systems. The lessons
learned and tools developed in this research provide a foundation for
continued innovation in automating the detection of NFRs, ensuring
their integration into the earliest stages of software development.

O N L I N E M AT E R I A L

Detecting privacy requirements from User Stories
with NLP transfer learning models

Link to the paper:

https://www.sciencedirect.com/science/article/pii/S0950584922000246

Link to the replication package:

https://tinyurl.com/US-privacy

Beyond Domain Dependency
in Security Requirements Identification

Link to the replication package:

https://zenodo.org/records/10438323

Automatic Identification of Privacy and Security Requirements:
A Systematic Literature Review

Link to the replication package:

https://drive.google.com/drive/folders/

1OOm55P-iR-nSSpm0PELCMhE8q9--YzcM?usp=sharing

A First Eye on the Impact of Quantum Natural Language
Representations for Non-Functional Requirements Classification

Link to the replication package:

https://drive.google.com/drive/u/2/folders/1tULvfFaa2tAJREf2HWpJzpNYvtWx2ntg

RECOVER: Toward the Automatic Requirements Generation
from Stakeholders’ Conversations

Link to the paper:

https://arxiv.org/abs/2411.19552

185

https://www.sciencedirect.com/science/article/pii/S0950584922000246
https://tinyurl.com/US-privacy
https://zenodo.org/records/10438323
https://drive.google.com/drive/folders/1OOm55P-iR-nSSpm0PELCMhE8q9--YzcM?usp=sharing
https://drive.google.com/drive/folders/1OOm55P-iR-nSSpm0PELCMhE8q9--YzcM?usp=sharing
https://drive.google.com/drive/u/2/folders/1tULvfFaa2tAJREf2HWpJzpNYvtWx2ntg
https://arxiv.org/abs/2411.19552

186 conclusion

PReDUS: A Privacy Requirements Detector From User Stories

Link to the paper:

https://ceur-ws.org/Vol-3122/NLP4RE-paper-4.pdf

Link to the replication package:

https://github.com/fcasillo/

PReDUS-A-Privacy-Requirements-Detector-from-User-Stories

ReFAIR: Toward a Context-Aware Recommender
for Fairness Requirements Engineering

Link to the paper:

https://dl.acm.org/doi/10.1145/3597503.3639185

Link to the replication package:

https://zenodo.org/records/10470916

Towards Generating the Rationale for Code Changes

Link to the paper:

https://antoniomastropaolo.com/assets/pdf/ICPC_RENE_2025.pdf

Link to the replication package:

https://zenodo.org/records/8187207

https://ceur-ws.org/Vol-3122/NLP4RE-paper-4.pdf
https://github.com/fcasillo/PReDUS-A-Privacy-Requirements-Detector-from-User-Stories
https://github.com/fcasillo/PReDUS-A-Privacy-Requirements-Detector-from-User-Stories
https://dl.acm.org/doi/10.1145/3597503.3639185
https://zenodo.org/records/10470916
https://antoniomastropaolo.com/assets/pdf/ICPC_RENE_2025.pdf
https://zenodo.org/records/8187207

B I B L I O G R A P H Y

[1] Mina Abbaszade, Mariam Zomorodi, Vahid Salari, and Philip
Kurian. “Toward Quantum Machine Translation of Syntacti-
cally Distinct Languages.” In: ArXiv abs/2307.16576 (2023).
url: https://api.semanticscholar.org/CorpusID:260334460.

[2] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur
Teredesai. “Interpretable machine learning in healthcare.” In:
Proceedings of the 2018 ACM international conference on bioin-
formatics, computational biology, and health informatics. 2018,
pp. 559–560.

[3] Osamah AlDhafer, Irfan Ahmad, and Sajjad Mahmood. “An
end-to-end deep learning system for requirements classifica-
tion using recurrent neural networks.” In: Inf. Softw. Technol.
147 (2022), p. 106877.

[4] Sousuke Amasaki and Pattara Leelaprute. “The Effects of
Vectorization Methods on Non-Functional Requirements Clas-
sification.” In: 2018 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA) (2018), pp. 175–182.

[5] David Ameller, Claudia P. Ayala, Jordi Cabot, and Xavier
Franch. “How do software architects consider non-functional
requirements: An exploratory study.” In: 2012 20th IEEE Inter-
national Requirements Engineering Conference (RE) (2012), pp. 41–
50. url: https : / / api . semanticscholar . org / CorpusID :

6992459.

[6] Anonymous. Beyond Domain Dependency in Security Require-
ments Identification. 2023. doi: 10.5281/zenodo.10438323. url:
https://doi.org/10.5281/zenodo.10438323.

[7] Anonymous. A First Eye on Non-Functional Requirements Detec-
tion with Quantum NLP. Sept. 2024.

187

https://api.semanticscholar.org/CorpusID:260334460
https://api.semanticscholar.org/CorpusID:6992459
https://api.semanticscholar.org/CorpusID:6992459
https://doi.org/10.5281/zenodo.10438323
https://doi.org/10.5281/zenodo.10438323

188 bibliography

[8] P. Anthonysamy, A. Rashid, and R. Chitchyan. “Privacy Re-
quirements: Present Future.” In: Proceedings of IEEE/ACM 39th
International Conference on Software Engineering: Software En-
gineering in Society Track (ICSE-SEIS). 2017, pp. 13–22. doi:
10.1109/ICSE-SEIS.2017.3.

[9] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-
mation Retrieval. 1999.

[10] Cody Baker, Lin Deng, Suranjan Chakraborty, and Josh Dehlinger.
“Automatic Multi-class Non-Functional Software Requirements
Classification Using Neural Networks.” In: 2019 IEEE 43rd An-
nual Computer Software and Applications Conference (COMPSAC)
2 (2019), pp. 610–615.

[11] Ken Barker, Mina Askari, Mishtu Banerjee, Kambiz Ghazinour,
Brenan Mackas, Maryam Majedi, Sampson Pun, and Adepele
Williams. “A Data Privacy Taxonomy.” In: Proceedings of the
26th British National Conference on Databases: Dataspace: The
Final Frontier. BNCOD 26. Birmingham, UK: Springer-Verlag,
2009, 42–54. isbn: 9783642028427. doi: 10.1007/978-3-642-
02843-4_7.

[12] Solon Barocas, Moritz Hardt, and Arvind Narayanan. “Fair-
ness in machine learning.” In: Nips tutorial 1 (2017), p. 2.

[13] Richard Berntsson-Svensson, Tony Gorschek, and Björn Reg-
nell. “Quality Requirements in Practice: An Interview Study
in Requirements Engineering for Embedded Systems.” In: Re-
quirements Engineering: Foundation for Software Quality. 2009.

[14] Dane Bertram. “Likert scales.” In: Retrieved November 2.10

(2007), pp. 1–10.

[15] Seblewongel Esseynew Biable, Nuno Manuel Garcia, Dida
Midekso, and Nuno Pombo. “Ethical Issues in Software Re-
quirements Engineering.” In: Software 1.1 (2022), pp. 31–52.
issn: 2674-113X.

[16] Manal Binkhonain and Liping Zhao. “A review of machine
learning algorithms for identification and classification of non-
functional requirements.” In: Expert Syst. Appl. X 1 (2019).

https://doi.org/10.1109/ICSE-SEIS.2017.3
https://doi.org/10.1007/978-3-642-02843-4_7
https://doi.org/10.1007/978-3-642-02843-4_7

bibliography 189

[17] Sumon Biswas and Hridesh Rajan. “Fair Preprocessing: To-
wards Understanding Compositional Fairness of Data Trans-
formers in Machine Learning Pipeline.” In: Proceedings of the
29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2021. Athens, Greece: Association for Computing
Machinery, 2021, 981–993. isbn: 9781450385626.

[18] B. Boehm and V.R. Basili. “Top 10 list software development.”
In: Computer 34.1 (2001), pp. 135–137.

[19] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. “Enriching Word Vectors with Subword Informa-
tion.” In: arXiv preprint arXiv:1607.04606 (2016).

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching Word Vectors with Subword Information. 2017.
arXiv: 1607.04606 [cs.CL].

[21] Andreas Borg, Angela Yong, Pär Carlshamre, and Kristian
Sandahl. “The Bad Conscience of Requirements Engineering :
An Investigation in Real-World Treatment of Non-Functional
Requirements.” In: Computer Science (2003). url: https://api.
semanticscholar.org/CorpusID:12513811.

[22] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and
Jeffrey Dean. “Large Language Models in Machine Transla-
tion.” In: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL). Prague, Czech Repub-
lic: Association for Computational Linguistics, 2007, pp. 858–
867. url: https://aclanthology.org/D07-1090.

[23] Leo Breiman. “Bagging predictors.” In: Machine Learning (1996).

[24] Frederick P. Brooks. “No Silver Bullet: Essence and Accidents
of Software Engineering.” In: 1987.

[25] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software
Engineering Using UML, Patterns, and Java™ Third Edition. by
Pearson Education, Inc., 2010.

https://arxiv.org/abs/1607.04606
https://api.semanticscholar.org/CorpusID:12513811
https://api.semanticscholar.org/CorpusID:12513811
https://aclanthology.org/D07-1090

190 bibliography

[26] Yuriy Brun and Alexandra Meliou. “Software fairness.” In:
Proceedings of the 2018 26th ACM joint meeting on european soft-
ware engineering conference and symposium on the foundations of
software engineering. 2018, pp. 754–759.

[27] Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton An-
derson, and Richard Zemel. “Understanding the Origins of
Bias in Word Embeddings.” In: Proceedings of the 36th Interna-
tional Conference on Machine Learning. Ed. by Kamalika Chaud-
huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Ma-
chine Learning Research. PMLR, 2019, pp. 803–811.

[28] Donald T Campbell and Thomas D Cook. “Quasi-experimentation.”
In: Chicago, IL: Rand Mc-Nally (1979).

[29] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Detecting Privacy Requirements from User Stories with NLP
Transfer Learning Models.” In: Inf. Softw. Technol. 146 (2022).

[30] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“PReDUS: A Privacy Requirements Detector From User Sto-
ries.” In: REFSQ Workshops. 2022.

[31] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Detecting privacy requirements from User Stories with
NLP transfer learning models.” In: Information and Software
Technology 146 (2022), p. 106853. issn: 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2022.106853.

[32] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Automatic Identification of Privacy and Security Require-
ments: A Systematic Literature Review.” In: Under minor
revision in Requirement Engineering Journal (2025).

[33] Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino.
“Beyond Domain Dependency in Security Requirements
Identification.” In: Information and Software Technology, 182

(2025), p. 107702. issn: 0950-5849. doi: https://doi.org/10.
1016/j.infsof.2025.107702.

https://doi.org/https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/https://doi.org/10.1016/j.infsof.2025.107702
https://doi.org/https://doi.org/10.1016/j.infsof.2025.107702

bibliography 191

[34] Francesco Casillo, Antonio Mastropaolo, Gabriele Bavota, Vin-
cenzo Deufemia, and Carmine Gravino. “Towards Generating
the Rationale for Code Changes.” In: 33rd IEEE/ACM Interna-
tional Conference on Program Comprehension (ICPC 2025). ICSE
’25. Ottawa, Canada, 2025.

[35] L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth
K. Vishnoi. “Classification with Fairness Constraints: A Meta-
Algorithm with Provable Guarantees.” In: Proceedings of the
Conference on Fairness, Accountability, and Transparency. FAT*
’19. Atlanta, GA, USA: Association for Computing Machinery,
2019, 319–328. isbn: 9781450361255.

[36] Joymallya Chakraborty, Suvodeep Majumder, and Tim Men-
zies. “Bias in machine learning software: why? how? what to
do?” In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. 2021, pp. 429–440.

[37] Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente Or-
donez. “Bias and fairness in natural language processing.”
In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP): Tutorial
Abstracts. 2019.

[38] Francis Chantree. “Identifying Nocuous Ambiguities in Nat-
ural Language Requirements.” In: 14th IEEE International Re-
quirements Engineering Conference (RE’06) (2006), pp. 59–68.

[39] Ranit Chatterjee, Abdul Ahmed, Preethu Rose Anish, Brijen-
dra Kumar Suman, Prashant Lawhatre, and Smita Ghaisas. “A
Pipeline for Automating Labeling to Prediction in Classifica-
tion of NFRs.” In: 2021 IEEE 29th International Requirements
Engineering Conference (RE) (2021), pp. 323–323.

[40] Cheligeer Cheligeer, Jingwei Huang, Guosong Wu, Nadia
Bhuiyan, Yuan Xu, and Yong Zeng. “Machine learning in
requirements elicitation: a literature review.” In: Artificial In-
telligence for Engineering Design, Analysis and Manufacturing 36

(2022), e32.

192 bibliography

[41] Tianqi Chen and Carlos Guestrin. “XGBoost.” In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016. doi: 10.1145/2939672.
2939785. url: https://doi.org/10.1145\%2F2939672.2939785.

[42] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Har-
man. “MAAT: A Novel Ensemble Approach to Addressing
Fairness and Performance Bugs for Machine Learning Soft-
ware.” In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2022. Singapore, Singapore:
Association for Computing Machinery, 2022, 1122–1134. isbn:
9781450394130.

[43] Alexandra Chouldechova and Aaron Roth. “A snapshot of the
frontiers of fairness in machine learning.” In: Communications
of the ACM 63.5 (2020), pp. 82–89.

[44] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopou-
los. Non-functional requirements in software engineering. Vol. 5.
Springer Science & Business Media, 2012.

[45] Stephen Clark. “Something Old, Something New: Grammar-
based CCG Parsing with Transformer Models.” In: ArXiv
abs/2109.10044 (2021). url: https://api.semanticscholar.
org/CorpusID:237581168.

[46] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Pe-
ter Solc. “The Detection and Classification of Non-Functional
Requirements with Application to Early Aspects.” In: 14th
IEEE International Requirements Engineering Conference (RE’06)
(2006), pp. 39–48.

[47] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Pe-
ter Solc. “The Detection and Classification of Non-Functional
Requirements with Application to Early Aspects.” In: 14th
IEEE International Requirements Engineering Conference (RE’06)
(2006), pp. 39–48.

[48] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Pe-
ter Solc. “Automated Classification of Non-Functional Require-

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145\%2F2939672.2939785
https://api.semanticscholar.org/CorpusID:237581168
https://api.semanticscholar.org/CorpusID:237581168

bibliography 193

ments.” In: Requir. Eng. 12.2 (2007), 103–120. issn: 0947-3602.
doi: 10.1007/s00766-007-0045-1.

[49] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. “Math-
ematical Foundations for a Compositional Distributional Model
of Meaning.” In: ArXiv abs/1003.4394 (2010).

[50] Mike Cohn. User Stories Applied: For Agile Software Development.
Addison Wesley, 2004. isbn: 0-321-20568-5.

[51] Mike Cohn. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[52] William Jay Conover. Practical nonparametric statistics. Wiley
series in probability and statistics. Wiley, 1999.

[53] F. Dalpiaz. Requirements data sets (user stories). https://data.mendeley.com/datasets/7zbk8zsd8y/.
2018. doi: 10.17632/7zbk8zsd8y.1.

[54] Fabiano Dalpiaz, Ivor Van Der Schalk, Sjaak Brinkkemper,
Fatma Basak Aydemir, and Garm Lucassen. “Detecting ter-
minological ambiguity in user stories: Tool and experimenta-
tion.” In: Inf. Softw. Technol. 110 (2019), pp. 3–16.

[55] S. De Capitani Di Vimercati, S. Foresti, G. Livraga, and P. Sama-
rati. “Data Privacy: Definitions and Techniques.” In: Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 20.06 (2012), pp. 793–817. doi: 10.1142/S0218488512400247.

[56] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[57] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[58] J.L. Devore, N.R. Farnum, and J.A. Doi. Applied Statistics
for Engineers and Scientists. Cengage Learning, 2013. isbn:
9781133111368. url: https://books.google.it/books?id=
psg_CQAAQBAJ.

[59] Edna Dias Canedo and Bruno Cordeiro Mendes. “Software
Requirements Classification Using Machine Learning Algo-
rithms.” In: Entropy 22.9 (2020). issn: 1099-4300.

https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.1142/S0218488512400247
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://books.google.it/books?id=psg_CQAAQBAJ
https://books.google.it/books?id=psg_CQAAQBAJ

194 bibliography

[60] Mengnan Du, Fan Yang, Na Zou, and Xia Hu. “Fairness in
deep learning: A computational perspective.” In: IEEE Intelli-
gent Systems 36.4 (2020), pp. 25–34.

[61] Nicolau Duran-Silva, Enric Fuster, Francesco Alessandro Mas-
succi, César Parra-Rojas, Arnau Quinquillà, Fernando Roda,
Bernardo Rondelli, Nicandro Bovenzi, and Chiara Toietta. A
controlled vocabulary for research and innovation in the field of Arti-
ficial Intelligence (AI). en. 2021. doi: 10.5281/ZENODO.5591987.
url: https://zenodo.org/record/5591987.

[62] Fahime Ebrahimi and Anas Mahmoud. “Unsupervised Sum-
marization of Privacy Concerns in Mobile Application Re-
views.” In: Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering (2022).

[63] Meryem Elallaoui, Khalid Nafil, and Raja Touahni. “Auto-
matic Transformation of User Stories into UML Use Case
Diagrams using NLP Techniques.” In: Procedia Computer Sci-
ence 130 (2018). The 9th International Conference on Ambient
Systems, Networks and Technologies (ANT 2018) / The 8th
International Conference on Sustainable Energy Information
Technology (SEIT-2018) / Affiliated Workshops, pp. 42–49.
issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.
2018.04.010.

[64] Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and
Gian Antonio Susto. “Algorithmic fairness datasets: the story
so far.” In: Data Mining and Knowledge Discovery 36.6 (2022),
pp. 2074–2152. doi: 10 . 1007 / s10618 - 022 - 00854 - z. url:
https://doi.org/10.1007/s10618-022-00854-z.

[65] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Pro-
gramming and Natural Languages.” In: CoRR abs/2002.08155

(2020). arXiv: 2002.08155. url: https://arxiv.org/abs/2002.
08155.

[66] D. Méndez Fernández et al. “Naming the pain in requirements
engineering - Contemporary problems, causes, and effects in
practice.” Version 22(5). In: Empirical software engineering (2017),
pp. 2298–2338. doi: 10.1007/s10664-016-9451-7.

https://doi.org/10.5281/ZENODO.5591987
https://zenodo.org/record/5591987
https://doi.org/https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1007/s10618-022-00854-z
https://doi.org/10.1007/s10618-022-00854-z
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.1007/s10664-016-9451-7

bibliography 195

[67] Carmine Ferrara, Francesco Casillo, Carmine Gravino, Andrea
De Lucia, and Fabio Palomba. ReFAIR: Toward a Context-Aware
Recommender for Fairness Requirements Engineering. New York,
NY, USA, 2024. doi: 10.1145/3597503.3639185. url: https:
//doi.org/10.1145/3597503.3639185.

[68] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi.
PURE: a Dataset of Public Requirements Documents. Version 2.0.
Sept. 2022. doi: 10.5281/zenodo.7118517. url: https://doi.
org/10.5281/zenodo.7118517.

[69] Anthony Finkelstein, Mark Harman, S Afshin Mansouri, Jian
Ren, and Yuanyuan Zhang. ““Fairness analysis” in require-
ments assignments.” In: 2008 16th IEEE International Require-
ments Engineering Conference. IEEE. 2008, pp. 115–124.

[70] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. “Fair-
ness testing: testing software for discrimination.” In: Proceed-
ings of the 2017 11th Joint meeting on foundations of software
engineering. 2017, pp. 498–510.

[71] Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt Schneider,
and Jan Jürjens. “Maintaining requirements for long-living
software systems by incorporating security knowledge.” In:
2014 IEEE 22nd International Requirements Engineering Confer-
ence (RE) (2014), pp. 103–112.

[72] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelli-
gent Systems. O’Reilly Media, 2019. isbn: 9781492032595. url:
https://books.google.ch/books?id=HnetDwAAQBAJ.

[73] Alastair J. Gill, Asimina Vasalou, Chrysanthi Papoutsi, and
Adam N. Joinson. “Privacy Dictionary: A Linguistic Taxonomy
of Privacy for Content Analysis.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York,
NY, USA: ACM, 2011, 3227–3236. isbn: 9781450302289. doi:
10.1145/1978942.1979421.

[74] R. Guarasci, Giuseppe De Pietro, and Massimo Esposito. “Quan-
tum Natural Language Processing: Challenges and Opportuni-

https://doi.org/10.1145/3597503.3639185
https://doi.org/10.1145/3597503.3639185
https://doi.org/10.1145/3597503.3639185
https://doi.org/10.5281/zenodo.7118517
https://doi.org/10.5281/zenodo.7118517
https://doi.org/10.5281/zenodo.7118517
https://books.google.ch/books?id=HnetDwAAQBAJ
https://doi.org/10.1145/1978942.1979421

196 bibliography

ties.” In: Applied Sciences (2022). url: https://api.semanticscholar.
org/CorpusID:249333405.

[75] Khan Mohammad Habibullah and Jennifer Horkoff. “Non-
functional Requirements for Machine Learning: Understand-
ing Current Use and Challenges in Industry.” In: 2021 IEEE
29th International Requirements Engineering Conference (RE) (2021),
pp. 13–23.

[76] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram
Wettroth Harrow, Abhinav Kandala, Jerry M. Chow, and Jay
M. Gambetta. “Supervised learning with quantum-enhanced
feature spaces.” In: Nature 567 (2018), pp. 209 –212. url: https:
//api.semanticscholar.org/CorpusID:51680972.

[77] Petra Heck and Andy Zaidman. A Quality Framework for Agile
Requirements: A Practitioner’s Perspective. 2014. arXiv: 1406.
4692 [cs.SE].

[78] Valery Herrington1, Oluwafemi Adedeji2, and Valery Her-
rington. “At The Intersection of Medical Robotic Surgery and
Drug Discovery with Quantum Computing.” In: Journal of
Electrical Electronics Engineering (2023). url: https://api.
semanticscholar.org/CorpusID:261157948.

[79] Tobias Hey, Jan Keim, Anne Koziolek, and Walter F. Tichy.
“NoRBERT: Transfer Learning for Requirements Classifica-
tion.” In: 2020 IEEE 28th International Requirements Engineering
Conference (RE) (2020), pp. 169–179.

[80] Frederic R. Hopp, Jacob T. Fisher, Devin Cornell, Richard
Huskey, and René Weber. “The extended Moral Foundations
Dictionary (eMFD): Development and applications of a crowd-
sourced approach to extracting moral intuitions from text.” In:
Behavior Research Methods 53.1 (2020), pp. 232–246.

[81] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman.
“Fairea: A Model Behaviour Mutation Approach to Bench-
marking Bias Mitigation Methods.” In: Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering.

https://api.semanticscholar.org/CorpusID:249333405
https://api.semanticscholar.org/CorpusID:249333405
https://api.semanticscholar.org/CorpusID:51680972
https://api.semanticscholar.org/CorpusID:51680972
https://arxiv.org/abs/1406.4692
https://arxiv.org/abs/1406.4692
https://api.semanticscholar.org/CorpusID:261157948
https://api.semanticscholar.org/CorpusID:261157948

bibliography 197

ESEC/FSE 2021. Athens, Greece: Association for Computing
Machinery, 2021, 994–1006. isbn: 9781450385626.

[82] Xiaolei Huang, Linzi Xing, Franck Dernoncourt, and Michael J.
Paul. “Multilingual Twitter Corpus and Baselines for Evaluat-
ing Demographic Bias in Hate Speech Recognition.” English.
In: Proceedings of the Twelfth Language Resources and Evaluation
Conference. European Language Resources Association, 2020,
pp. 1440–1448. isbn: 979-10-95546-34-4.

[83] Sayem Mohammad Imtiaz, Md Rayhan Amin, Anh Quoc Do,
Stefano Iannucci, and Tanmay Bhowmik. “Predicting Vulner-
ability for Requirements.” In: 2021 IEEE 22nd International
Conference on Information Reuse and Integration for Data Science
(IRI) (2021), pp. 160–167.

[84] Sayem Mohammad Imtiaz and Tanmay Bhowmik. “Towards
data-driven vulnerability prediction for requirements.” In: Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (2018).

[85] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva,
and Shahaboddin Shamshirband. “A systematic literature re-
view on agile requirements engineering practices and chal-
lenges.” In: Computers in human behavior 51 (2015), pp. 915–929.

[86] Neil Ireson, Fabio Ciravegna, Mary Elaine Califf, Dayne Fre-
itag, Nicholas Kushmerick, and Alberto Lavelli. “Evaluating
Machine Learning for Information Extraction.” In: ICML ’05:
Proceedings of the 22nd International Conference on Machine Learn-
ing. ICML ’05. New York, NY, USA: ACM, 2005, 345–352. isbn:
1595931805. doi: 10.1145/1102351.1102395.

[87] Neil Ireson, Fabio Ciravegna, Mary Elaine Califf, Dayne Fre-
itag, Nicholas Kushmerick, and Alberto Lavelli. “Evaluating
Machine Learning for Information Extraction.” In: ICML ’05:
Proceedings of the 22nd International Conference on Machine Learn-
ing. ICML ’05. New York, NY, USA: ACM, 2005, 345–352. isbn:
1595931805. doi: 10.1145/1102351.1102395.

https://doi.org/10.1145/1102351.1102395
https://doi.org/10.1145/1102351.1102395

198 bibliography

[88] Vladimir Ivanov, Andrey Sadovykh, Alexandr Naumchev,
Alessandra Bagnato, and Kirill Yakovlev. Extracting Software
Requirements from Unstructured Documents. 2022. arXiv: 2202.
02135 [cs.SE].

[89] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algo-
rithms: A Classification Perspective. Cambridge University Press,
2011. doi: 10.1017/CBO9780511921803.

[90] S. Jiménez and R. Juárez-Ramírez. “A Quality Framework for
Evaluating Grammatical Structure of User Stories to Improve
External Quality.” In: Proceedings of 7th International Conference
in Software Engineering Research and Innovation (CONISOFT).
2019, pp. 147–153. doi: 10.1109/CONISOFT.2019.00029.

[91] Rajni Jindal, Ruchika Malhotra, and Abha Jain. “Automated
classification of security requirements.” In: 2016 International
Conference on Advances in Computing, Communications and Infor-
matics (ICACCI) (2016), pp. 2027–2033.

[92] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs
Douze, Hérve Jégou, and Tomas Mikolov. FastText.zip: Com-
pressing text classification models. 2016. arXiv: 1612.03651 [cs.CL].

[93] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of Tricks for Efficient Text Classification. 2016. arXiv:
1607.01759 [cs.CL].

[94] Ammar Ismael Kadhim. “Survey on supervised machine learn-
ing techniques for automatic text classification.” In: Artificial
Intelligence Review 52.1 (2019), pp. 273–292.

[95] Wahiba Ben Abdessalem Karaa, Zeineb Ben Azzouz, Aarti
Singh, Nilanjan Dey, Amira S. Ashour, and Henda Ben Ghézala.
“Automatic builder of class diagram (ABCD): an application
of UML generation from functional requirements.” In: Softw.
Pract. Exp. 46.11 (2016), pp. 1443–1458. doi: 10.1002/spe.2384.

[96] Dimitri Kartsaklis. “Coordination in Categorical Composi-
tional Distributional Semantics.” In: SLPCS@QPL. 2016. url:
https://api.semanticscholar.org/CorpusID:10842035.

https://arxiv.org/abs/2202.02135
https://arxiv.org/abs/2202.02135
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.1109/CONISOFT.2019.00029
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1607.01759
https://doi.org/10.1002/spe.2384
https://api.semanticscholar.org/CorpusID:10842035

bibliography 199

[97] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson,
Robin Lorenz, Alexis Toumi, Giovanni de Felice, Konstantinos
Meichanetzidis, Stephen Clark, and Bob Coecke. “lambeq: An
Efficient High-Level Python Library for Quantum NLP.” In:
arXiv preprint arXiv:2110.04236 (2021).

[98] Kamaljit Kaur and Parminder Kaur. “SABDM: A self-attention
based bidirectional-RNN deep model for requirements classi-
fication.” In: Journal of Software: Evolution and Process (2022).

[99] Kamaljit Kaur and Parminder Kaur. “BERT-CNN: Improving
BERT for Requirements Classification using CNN.” In: Proce-
dia Computer Science 218 (2023). International Conference on
Machine Learning and Data Engineering, pp. 2604–2611. issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2023.
01.234. url: https://www.sciencedirect.com/science/
article/pii/S187705092300234X.

[100] Khaleduzzaman, Zarina Che Embi, and Ng Kok Why. “A Sys-
tematic Review on Natural Language Processing and Machine
Learning Approaches to Improve Requirements Specification
in Software Requirements Engineering.” In: International Jour-
nal of Membrane Science and Technology (2023).

[101] Fatemeh Khayashi, Behnaz Jamasb, Reza Akbari, and Pirooz
Shamsinejadbabaki. “Deep Learning Methods for Software Re-
quirement Classification: A Performance Study on the PURE
dataset.” In: ArXiv abs/2211.05286 (2022).

[102] Iqra Khurshid, Salma Imtiaz, Wadii Boulila, Zahid Khan, Al-
mas Abbasi, Abdul Rehman Javed, and Zunera Jalil. “Classi-
fication of Non-Functional Requirements From IoT Oriented
Healthcare Requirement Document.” In: Frontiers in Public
Health 10 (2022).

[103] Eric Knauss, Siv Hilde Houmb, Kurt Schneider, Shareeful
Islam, and Jan Jürjens. “Supporting Requirements Engineers
in Recognising Security Issues.” In: Requirements Engineering:
Foundation for Software Quality. 2011.

https://doi.org/https://doi.org/10.1016/j.procs.2023.01.234
https://doi.org/https://doi.org/10.1016/j.procs.2023.01.234
https://www.sciencedirect.com/science/article/pii/S187705092300234X
https://www.sciencedirect.com/science/article/pii/S187705092300234X

200 bibliography

[104] Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and
Jan Jürjens. “Supporting Requirements Engineers in Recognis-
ing Security Issues.” In: Requirements Engineering: Foundation
for Software Quality. Ed. by Daniel Berry and Xavier Franch.
Springer Berlin Heidelberg, 2011, pp. 4–18. isbn: 978-3-642-
19858-8.

[105] Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and
Jan Jürjens. “Supporting Requirements Engineers in Recognis-
ing Security Issues.” In: Requirements Engineering: Foundation
for Software Quality. Ed. by Daniel Berry and Xavier Franch.
Springer Berlin Heidelberg, 2011, pp. 4–18. isbn: 978-3-642-
19858-8.

[106] Armin Kobilica, Mohammed Ayub, and Jameleddine Hassine.
“Automated Identification of Security Requirements: A Ma-
chine Learning Approach.” In: Proceedings of the Evaluation and
Assessment in Software Engineering (2020).

[107] Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. “Trans-
fer learning in effort estimation.” In: Empir. Softw. Eng. 20.3
(2015), pp. 813–843. doi: 10.1007/s10664-014-9300-5.

[108] Rahul Krishna and Tim Menzies. “Bellwethers: A Baseline
Method for Transfer Learning.” In: IEEE Trans. Software Eng.
45.11 (2019), pp. 1081–1105. doi: 10.1109/TSE.2018.2821670.

[109] Zijad Kurtanović and W. Maalej. “Automatically Classifying
Functional and Non-functional Requirements Using Super-
vised Machine Learning.” In: 2017 IEEE 25th International Re-
quirements Engineering Conference (RE) (2017), pp. 490–495.

[110] Z. Kurtanović and W. Maalej. “Automatically Classifying
Functional and Non-functional Requirements Using Super-
vised Machine Learning.” In: Proceedings of IEEE 25th Interna-
tional Requirements Engineering Conference (RE). 2017, pp. 490–
495. doi: 10.1109/RE.2017.82.

[111] Zijad Kurtanović and Walid Maalej. “Automatically Classify-
ing Functional and Non-functional Requirements Using Su-
pervised Machine Learning.” In: 2017 IEEE 25th International
Requirements Engineering Conference (RE). 2017, pp. 490–495.

https://doi.org/10.1007/s10664-014-9300-5
https://doi.org/10.1109/TSE.2018.2821670
https://doi.org/10.1109/RE.2017.82

bibliography 201

[112] J. Lambek. “Type Grammar Revisited.” In: Logical Aspects
of Computational Linguistics. Ed. by Alain Lecomte, François
Lamarche, and Guy Perrier. Springer Berlin Heidelberg, 1999,
pp. 1–27. isbn: 978-3-540-48975-7.

[113] Omer Levy, Yoav Goldberg, and Ido Dagan. “Improving dis-
tributional similarity with lessons learned from word em-
beddings.” In: Transactions of the association for computational
linguistics 3 (2015), pp. 211–225.

[114] Bing chuan Li and Xiuwen Nong. “Automatically classifying
non-functional requirements using deep neural network.” In:
Pattern Recognit. 132 (2022), p. 108948.

[115] Chuanyi Li, LiGuo Huang, Jidong Ge, Bin Luo, and Vincent
Ng. “Automatically classifying user requests in crowdsourc-
ing requirements engineering.” In: J. Syst. Softw. 138 (2018),
pp. 108–123.

[116] Gang Li, Chengpeng Zheng, Min Li, and Haosen Wang. “Au-
tomatic Requirements Classification Based on Graph Attention
Network.” In: IEEE Access 10 (2022), pp. 30080–30090.

[117] Tong Li and Zhishuai Chen. “An ontology-based learning
approach for automatically classifying security requirements.”
In: Journal of Systems and Software 165 (2020), p. 110566. issn:
0164-1212. doi: https://doi.org/10.1016/j.jss.2020.
110566.

[118] Tong Li and Zhishuai Chen. “An ontology-based learning
approach for automatically classifying security requirements.”
In: J. Syst. Softw. 165 (2020), p. 110566.

[119] Ze Shi Li, Manish Sihag, Nowshin Nawar Arony, Joao Bezerra
Junior, Thanh Binh Phan, Neil A. Ernst, and Daniela E. Herlea
Damian. “Narratives: the Unforeseen Influencer of Privacy
Concerns.” In: 2022 IEEE 30th International Requirements Engi-
neering Conference (RE) (2022), pp. 127–139.

[120] Márcia Lima, Victor Valle, Estevão Costa, Fylype Lira, and
Bruno Gadelha. “Software Engineering Repositories: Expand-
ing the PROMISE Database.” In: Proceedings of the XXXIII

https://doi.org/https://doi.org/10.1016/j.jss.2020.110566
https://doi.org/https://doi.org/10.1016/j.jss.2020.110566

202 bibliography

Brazilian Symposium on Software Engineering. SBES ’19. New
York, NY, USA: ACM, 2019, 427–436. isbn: 9781450376518. doi:
10.1145/3350768.3350776. url: https://doi.org/10.1145/
3350768.3350776.

[121] Márcia Lima, Victor Valle, Estevão Costa, Fylype Lira, and
Bruno F. Gadelha. “Software Engineering Repositories: Ex-
panding the PROMISE Database.” In: Proceedings of the XXXIII
Brazilian Symposium on Software Engineering (2019). url: https:
//api.semanticscholar.org/CorpusID:202728524.

[122] Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt Schnei-
der. “Why We Need a Granularity Concept for User Stories.”
In: Agile Processes in Software Engineering and Extreme Program-
ming. Berlin, Heidelberg: Springer-Verlag, 2014, 110–125. isbn:
9783642206771.

[123] Delmer Alejandro López-Hernández, Efrén Mezura-Montes,
Jorge Octavio Ocharán-Hernández, and Ángel Juan Sánchez-
García. “Non-functional Requirements Classification using
Artificial Neural Networks.” In: 2021 IEEE International Au-
tumn Meeting on Power, Electronics and Computing (ROPEC) 5

(2021), pp. 1–6.

[124] Delmer Alejandro López-Hernández, Jorge Octavio Ocharán-
Hernández, Efrén Mezura-Montes, and Ángel Juan Sánchez-
García. “Automatic Classification of Software Requirements
using Artificial Neural Networks: A Systematic Literature
Review.” In: 2021 9th International Conference in Software Engi-
neering Research and Innovation (CONISOFT) (2021), pp. 152–
160.

[125] Nicholas Lourie, Ronan Le Bras, and Yejin Choi. “Scruples:
A corpus of community ethical judgments on 32,000 real-life
anecdotes.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 2021, pp. 13470–13479.

[126] Oscar Luaces, Jorge Díez, Jose Barranquero, Juan del Coz, and
Antonio Bahamonde. “Binary relevance efficacy for multilabel
classification.” In: Progress in Artificial Intelligence 1 (2012). doi:
10.1007/s13748-012-0030-x.

https://doi.org/10.1145/3350768.3350776
https://doi.org/10.1145/3350768.3350776
https://doi.org/10.1145/3350768.3350776
https://api.semanticscholar.org/CorpusID:202728524
https://api.semanticscholar.org/CorpusID:202728524
https://doi.org/10.1007/s13748-012-0030-x

bibliography 203

[127] G. Lucassen, F. Dalpiaz, J. M. van der Werf, and S. Brinkkem-
per. “Forging high-quality User Stories: Towards a discipline
for Agile Requirements.” In: Proceedings of IEEE 23rd Interna-
tional Requirements Engineering Conference (RE). 2015, pp. 126–
135. doi: 10.1109/RE.2015.7320415.

[128] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der
Werf, and Sjaak Brinkkemper. “The Use and Effectiveness of
User Stories in Practice.” In: Requirements Engineering: Founda-
tion for Software Quality. 2016.

[129] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn van der Werf,
and Sjaak Brinkkemper. “The Use and Effectiveness of User
Stories in Practice.” In: Requirements Engineering: Foundation
for Software Quality. Ed. by Maya Daneva and Oscar Pastor.
Cham: Springer International Publishing, 2016, pp. 205–222.

[130] Garm Lucassen, Marcel Robeer, Fabiano Dalpiaz, Jan Mar-
tijn E. M. van der Werf, and Sjaak Brinkkemper. “Extracting
conceptual models from user stories with Visual Narrator.”
In: Requir. Eng. 22.3 (2017), pp. 339–358. doi: 10.1007/s00766-
017-0270-1.

[131] Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou
Sun. “PRCBERT: Prompt Learning for Requirement Classifi-
cation using BERT-based Pretrained Language Models.” In:
Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering (2022).

[132] Thang Luong, Hieu Pham, and Christopher D. Manning. “Ef-
fective Approaches to Attention-based Neural Machine Trans-
lation.” In: ArXiv abs/1508.04025 (2015).

[133] Milda Maciejauskaitė and Jolanta Miliauskaitė. “THE EF-
FICIENCY OF MACHINE LEARNING ALGORITHMS IN
CLASSIFYING NON-FUNCTIONAL REQUIREMENTS.” In:
New Trends in Computer Sciences (2024). url: https://api.
semanticscholar.org/CorpusID:270644801.

[134] Anas Mahmoud and Grant Williams. “Detecting, classifying,
and tracing non-functional software requirements.” In: Require-
ments Engineering 21 (2016), pp. 357–381.

https://doi.org/10.1109/RE.2015.7320415
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1007/s00766-017-0270-1
https://api.semanticscholar.org/CorpusID:270644801
https://api.semanticscholar.org/CorpusID:270644801

204 bibliography

[135] Richard R. Maiti and Frank J. Mitropoulos. “Capturing, elic-
iting, predicting and prioritizing (CEPP) non-functional re-
quirements metadata during the early stages of agile software
development.” In: SoutheastCon 2015 (2015), pp. 1–8.

[136] Vincenzo De Martino and Fabio Palomba. “Classification,
Challenges, and Automated Approaches to Handle Non-Functional
Requirements in ML-Enabled Systems: A Systematic Litera-
ture Review.” In: ArXiv abs/2311.17483 (2023).

[137] Aaron K. Massey, Jacob Eisenstein, Annie I. Antón, and Peter
P. Swire. “Automated text mining for requirements analysis
of policy documents.” In: 2013 21st IEEE International Require-
ments Engineering Conference (RE) (2013), pp. 4–13.

[138] Stuart McIlroy, Nasir Ali, Hammad Khalid, and A. Hassan.
“Analyzing and automatically labelling the types of user issues
that are raised in mobile app reviews.” In: Empirical Software
Engineering 21 (2015), pp. 1067–1106.

[139] Wes McKinney. “Data Structures for Statistical Computing in
Python.” In: Proceedings of the 9th Python in Science Conference.
Ed. by Stéfan van der Walt and Jarrod Millman. 2010, pp. 56

–61. doi: 10.25080/Majora-92bf1922-00a.

[140] Nuhil Mehdy, Casey Kennington, and Hoda Mehrpouyan.
“Privacy Disclosures Detection in Natural-Language Text Through
Linguistically-Motivated Artificial Neural Networks.” In: Secu-
rity and Privacy in New Computing Environments. 2019, pp. 152–
177. doi: 10.1007/978-3-030-21373-2_14.

[141] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. “A Survey on Bias and Fairness
in Machine Learning.” In: ACM Comput. Surv. 54.6 (2021). issn:
0360-0300.

[142] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. “A survey on bias and fairness
in machine learning.” In: ACM Computing Surveys (CSUR) 54.6
(2021), pp. 1–35.

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1007/978-3-030-21373-2_14

bibliography 205

[143] Marina Meilă. “Comparing clusterings—an information based
distance.” In: Journal of Multivariate Analysis 98.5 (2007), pp. 873–
895. issn: 0047-259X. doi: https://doi.org/10.1016/j.
jmva.2006.11.013. url: https://www.sciencedirect.com/
science/article/pii/S0047259X06002016.

[144] Mahmuda Akter Metu, Nazneen Akhter, Sanjeda Nasrin, Tas-
nim Anzum, Afrina Khatun, and Rashed Mazumder. “Hybrid
SVM-Bidirectional Long Short-Term Memory Model for Fine-
Grained Software Requirement Classification.” In: Journal of
Advances in Information Technology (2024).

[145] Ahmed Metwally and Chun-Heng Huang. “Scalable Similar-
ity Joins of Tokenized Strings.” In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 2019, pp. 1766–1777.
doi: 10.1109/ICDE.2019.00193.

[146] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[147] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. “Efficient Estimation of Word Representations in Vector
Space.” In: International Conference on Learning Representations.
2013.

[148] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and
Jeffrey Dean. Distributed Representations of Words and Phrases
and their Compositionality. 2013. arXiv: 1310.4546 [cs.CL].

[149] Claire Cain Miller. “Can an algorithm hire better than a hu-
man.” In: The New York Times 25 (2015).

[150] Mazen Mohamad, Jan-Philipp Steghöfer, Alexander Åström,
and Riccardo Scandariato. “Identifying security-related re-
quirements in regulatory documents based on cross-project
classification.” In: Proceedings of the 18th International Conference
on Predictive Models and Data Analytics in Software Engineering
(2022).

https://doi.org/https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/https://doi.org/10.1016/j.jmva.2006.11.013
https://www.sciencedirect.com/science/article/pii/S0047259X06002016
https://www.sciencedirect.com/science/article/pii/S0047259X06002016
https://doi.org/10.1109/ICDE.2019.00193
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546

206 bibliography

[151] Mazen Mohamad, Jan-Philipp Steghöfer, Alexander Åström,
and Riccardo Scandariato. “Identifying Security-Related Re-
quirements in Regulatory Documents Based on Cross-Project
Classification.” In: PROMISE 2022. New York, NY, USA: ACM,
2022, 82–91. isbn: 9781450398602. doi: 10 . 1145 / 3558489 .

3559074. url: https://doi.org/10.1145/3558489.3559074.

[152] Zafeiria Moumoulidou, Andrew McGregor, and Alexandra
Meliou. “Diverse Data Selection under Fairness Constraints.”
In: arXiv preprint arXiv:2010.09141 (2020).

[153] Nuthan Munaiah, Andrew Meneely, and Pradeep K. Mu-
rukannaiah. “A Domain-Independent Model for Identifying
Security Requirements.” In: 2017 IEEE 25th International Re-
quirements Engineering Conference (RE) (2017), pp. 506–511.

[154] Nuthan Munaiah, Andrew Meneely, and Pradeep K Murukan-
naiah. “A domain-independent model for identifying security
requirements.” In: 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE. 2017, pp. 506–511.

[155] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. “Re-
sponsible Data Integration: Next-Generation Challenges.” In:
Proceedings of the 2022 International Conference on Management
of Data. SIGMOD ’22. Philadelphia, PA, USA: Association for
Computing Machinery, 2022, 2458–2464. isbn: 9781450392495.

[156] J. Neerbeky, I. Assentz, and P. Dolog. “TABOO: Detecting
Unstructured Sensitive Information Using Recursive Neural
Networks.” In: Proceedings of IEEE 33rd International Conference
on Data Engineering (ICDE). 2017, pp. 1399–1400. doi: 10.1109/
ICDE.2017.195.

[157] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven
Bugiel. “Short Text, Large Effect: Measuring the Impact of
User Reviews on Android App Security & Privacy.” In: 2019
IEEE Symposium on Security and Privacy (SP) (2019), pp. 555–
569.

[158] Quyen L. Nguyen. “Non-functional requirements analysis
modeling for software product lines.” In: 2009 ICSE Workshop
on Modeling in Software Engineering. 2009, pp. 56–61.

https://doi.org/10.1145/3558489.3559074
https://doi.org/10.1145/3558489.3559074
https://doi.org/10.1145/3558489.3559074
https://doi.org/10.1109/ICDE.2017.195
https://doi.org/10.1109/ICDE.2017.195

bibliography 207

[159] Quyen L. Nguyen. “Non-functional requirements analysis
modeling for software product lines.” In: Proceedings of ICSE
Workshop on Modeling in Software Engineering, MiSE 2009, Van-
couver, BC, Canada, May 17-18, 2009. IEEE Computer Society,
2009, pp. 56–61. doi: 10.1109/MISE.2009.5069898.

[160] Laura Okpara, Colin Werner, Adam Murray, and Daniela
Damian. “The role of informal communication in building
shared understanding of non-functional requirements in re-
mote continuous software engineering.” In: Requirements Engi-
neering 28.4 (2023), pp. 595–617.

[161] Michel Oleynik, Amila Kugic, Zdenko Kasáč, and Markus
Kreuzthaler. “Evaluating shallow and deep learning strategies
for the 2018 n2c2 shared task on clinical text classification.”
In: Journal of the American Medical Informatics Association 26.11

(2019), pp. 1247–1254. issn: 1527-974X. doi: 10.1093/jamia/
ocz149.

[162] Anderson Oliveira, João Lucas Correia, Wesley K. G. As-
sunção, Juliana Alves Pereira, Rafael Maiani de Mello, Daniel
Coutinho, Caio Barbosa, Paulo Libório, and Alessandro Garcia.
“Understanding Developers’ Discussions and Perceptions on
Non-functional Requirements: The Case of the Spring Ecosys-
tem.” In: Proc. ACM Softw. Eng. 1 (2024), pp. 517–538. url:
https://api.semanticscholar.org/CorpusID:270869076.

[163] Parmy Olson. “The algorithm that beats your bank manager.”
In: CNN Money March 15 (2011).

[164] Carla L. Pacheco, Iván A. García, and Miryam Reyes. “Re-
quirements elicitation techniques: a systematic literature re-
view based on the maturity of the techniques.” In: IET Softw.
12 (2018), pp. 365–378.

[165] F. Paetsch, A. Eberlein, and F. Maurer. “Requirements engi-
neering and agile software development.” In: WET ICE 2003.
Proceedings. Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2003.
2003, pp. 308–313.

https://doi.org/10.1109/MISE.2009.5069898
https://doi.org/10.1093/jamia/ocz149
https://doi.org/10.1093/jamia/ocz149
https://api.semanticscholar.org/CorpusID:270869076

208 bibliography

[166] Frauke Paetsch, Armin Eberlein, and Frank Maurer. “Require-
ments Engineering and Agile Software Development.” In:
Proceedings of 12th IEEE International Workshops on Enabling
Technologies (WETICE 2003), Infrastructure for Collaborative En-
terprises, 9-11 June 2003, Linz, Austria. IEEE Computer Society,
2003, pp. 308–313. doi: 10.1109/ENABL.2003.1231428.

[167] Krupa Patel and Unnati Shah. “Requirements Specification.”
In: The Future of Artificial Intelligence and Robotics: Proceedings
of 5th International Conference on Deep Learning, Artificial Intelli-
gence and Robotics (ICDLAIR). Vol. 1001. Springer Nature. 2023,
p. 147.

[168] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in
Python.” In: Journal of Machine Learning Research 12.85 (2011),
pp. 2825–2830. url: http://jmlr.org/papers/v12/pedregosa11a.
html.

[169] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. “GloVe: Global Vectors for Word Representation.” In: Em-
pirical Methods in Natural Language Processing (EMNLP). 2014,
pp. 1532–1543. url: http://www.aclweb.org/anthology/D14-
1162.

[170] Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. “GloVe: Global Vectors for Word Representation.” In:
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/
v1/D14-1162. url: https://aclanthology.org/D14-1162.

[171] Dana Pessach and Erez Shmueli. “A Review on Fairness in
Machine Learning.” In: ACM Comput. Surv. 55.3 (2022). issn:
0360-0300. doi: 10.1145/3494672. url: https://doi.org/10.
1145/3494672.

[172] Klaus Pohl. Requirements Engineering: Fundamentals, Principles,
and Techniques. 1st. Springer Publishing Company, Incorpo-
rated, 2010. isbn: 3642125778.

https://doi.org/10.1109/ENABL.2003.1231428
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.1145/3494672
https://doi.org/10.1145/3494672
https://doi.org/10.1145/3494672

bibliography 209

[173] David M. W. Powers. “Evaluation: from Precision, Recall and
F-measure to ROC, Informedness, Markedness and Corre-
lation.” In: Journal of Machine Learning Technologies 2 (2011),
pp. 37–63.

[174] David M. W. Powers. Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation. 2020.
arXiv: 2010.16061 [cs.LG].

[175] Qiskit Development Team. “Qiskit: An Open-source Frame-
work for Quantum Computing.” In: Zenodo 10.5281/zenodo.2562111

(2019). url: https://doi.org/10.5281/zenodo.2562111.

[176] Alec Radford and Karthik Narasimhan. “Improving Language
Understanding by Generative Pre-Training.” In: 2018.

[177] Abdur Rahman, Abu Bakar Siddik Nayem, and Saeed Sid-
dik. “Non-Functional Requirements Classification Using Ma-
chine Learning Algorithms.” In: International Journal of In-
telligent Systems and Applications (2023). url: https://api.
semanticscholar.org/CorpusID:259381940.

[178] K.M. Ashikur Rahman, Anwar Ghani, Rashid Ahmad, and
Syed Haseeb Sajjad. “Hybrid Deep Learning Approach for
Nonfunctional Software Requirements Classifications.” In:
2023 International Conference on Communication, Computing and
Digital Systems (C-CODE) (2023), pp. 1–5.

[179] K.M. Ashikur Rahman, Anwar Ghani, Sanjay Misra, and Arif
Ur Rahman. “A deep learning framework for non-functional
requirement classification.” In: Scientific Reports 14 (2024).

[180] Kiramat Rahman, Anwar Ghani, Abdulrahman Alzahrani,
Muhammad Usman Tariq, and Arif Ur Rahman. “Pre-Trained
Model-Based NFR Classification: Overcoming Limited Data
Challenges.” In: IEEE Access 11 (2023), pp. 81787–81802.

[181] Mohamed Abdur Rahman, Md. Ariful Haque, Md. Nurul
Ahad Tawhid, and Md. Saeed Siddik. “Classifying non-functional
requirements using RNN variants for quality software devel-
opment.” In: Proceedings of the 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality
Evaluation (2019).

https://arxiv.org/abs/2010.16061
https://doi.org/10.5281/zenodo.2562111
https://api.semanticscholar.org/CorpusID:259381940
https://api.semanticscholar.org/CorpusID:259381940

210 bibliography

[182] Juan Enrique Ramos. “Using TF-IDF to Determine Word Rele-
vance in Document Queries.” In: Computer Science (2003). url:
https://api.semanticscholar.org/CorpusID:14638345.

[183] Abderahman Rashwan, Olga Ormandjieva, and René Witte.
“Ontology-Based Classification of Non-functional Require-
ments in Software Specifications: A New Corpus and SVM-
Based Classifier.” In: 2013 IEEE 37th Annual Computer Software
and Applications Conference (2013), pp. 381–386.

[184] ReFAIR: Toward a Context-Aware Recommender for Fairness Re-
quirements Engineering. Zenodo, 2024. doi: 10.5281/zenodo.
10470916. url: https://doi.org/10.5281/zenodo.10470916.

[185] Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe
Frank. “Classifier Chains: A Review and Perspectives.” In:
Journal of Artificial Intelligence Research 70 (2021), pp. 683–718.
doi: 10.1613/jair.1.12376. url: https://doi.org/10.1613\
%2Fjair.1.12376.

[186] Jörg Rech and Klaus-Dieter Althoff. “Artificial intelligence
and software engineering: Status and future trends.” In: KI
18.3 (2004), pp. 5–11.

[187] Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph
Treude. “Software Engineering User Study Recruitment on
Prolific: An Experience Report.” In: arXiv preprint arXiv:2201.05348
(2022).

[188] Maria Riaz, Jason Tyler King, John Slankas, and Laurie A.
Williams. “Hidden in plain sight: Automatically identifying
security requirements from natural language artifacts.” In:
2014 IEEE 22nd International Requirements Engineering Confer-
ence (RE) (2014), pp. 183–192.

[189] C. J. van Rijsbergen. “Information Retrieval.” In: ACM SIGSPA-
TIAL International Workshop on Advances in Geographic Informa-
tion Systems. 1979.

[190] Abhishek Sainani, Preethu Rose Anish, Vivek Joshi, and Smita
Ghaisas. “Extracting and Classifying Requirements from Soft-
ware Engineering Contracts.” In: 2020 IEEE 28th International
Requirements Engineering Conference (RE) (2020), pp. 147–157.

https://api.semanticscholar.org/CorpusID:14638345
https://doi.org/10.5281/zenodo.10470916
https://doi.org/10.5281/zenodo.10470916
https://doi.org/10.5281/zenodo.10470916
https://doi.org/10.1613/jair.1.12376
https://doi.org/10.1613\%2Fjair.1.12376
https://doi.org/10.1613\%2Fjair.1.12376

bibliography 211

[191] Marco Saltarella, Giuseppe Desolda, and Rosa Lanzilotti. “Pri-
vacy Design Strategies and the GDPR: A Systematic Literature
Review.” In: Interacción. 2021.

[192] Steven L. Salzberg. “On comparing classifiers: Pitfalls to avoid
and a recommended approach.” English (US). In: Data Mining
and Knowledge Discovery 1.3 (1997), pp. 317–328. issn: 1384-
5810. doi: 10.1023/A:1009752403260.

[193] M.A.F. Saroth, P.M.A.K. Wijerathne, and B.T.G.S. Kumara.
“Automatic Multi-Class Non-Functional Software Require-
ments Classification Using Machine Learning Algorithms.”
In: 2024 International Research Conference on Smart Computing
and Systems Engineering (SCSE) 7 (2024), pp. 1–6. url: https:
//api.semanticscholar.org/CorpusID:270398333.

[194] Kurt Schneider, Eric Knauss, Siv Hilde Houmb, Shareeful
Islam, and Jan Jürjens. “Enhancing security requirements en-
gineering by organizational learning.” In: Requirements Engi-
neering 17 (2012), pp. 35–56.

[195] Qais A. Shreda and Abualsoud Hanani. “Identifying Non-
functional Requirements from Unconstrained Documents us-
ing Natural Language Processing and Machine Learning Ap-
proaches.” In: IEEE Access (2024).

[196] P. Silva, C. Gonçalves, C. Godinho, N. Antunes, and M. Cu-
rado. “Using NLP and Machine Learning to Detect Data Pri-
vacy Violations.” In: Proceedings of IEEE Conference on Computer
Communications Workshops. 2020, pp. 972–977. doi: 10.1109/
INFOCOMWKSHPS50562.2020.9162683.

[197] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. “Ex-
pressibility and Entangling Capability of Parameterized Quan-
tum Circuits for Hybrid Quantum-Classical Algorithms.” In:
Advanced Quantum Technologies 2 (2019). url: https://api.
semanticscholar.org/CorpusID:166228228.

[198] J. Slankas and L. Williams. “Automated extraction of non-
functional requirements in available documentation.” In: Pro-
ceedings of 1st International Workshop on Natural Language Anal-

https://doi.org/10.1023/A:1009752403260
https://api.semanticscholar.org/CorpusID:270398333
https://api.semanticscholar.org/CorpusID:270398333
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162683
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162683
https://api.semanticscholar.org/CorpusID:166228228
https://api.semanticscholar.org/CorpusID:166228228

212 bibliography

ysis in Software Engineering (NaturaLiSE). 2013, pp. 9–16. doi:
10.1109/NAturaLiSE.2013.6611715.

[199] John Slankas and Laurie A. Williams. “Access Control Pol-
icy Extraction from Unconstrained Natural Language Text.”
In: 2013 International Conference on Social Computing (2013),
pp. 435–440.

[200] John Slankas and Laurie A. Williams. “Automated extraction
of non-functional requirements in available documentation.”
In: 2013 1st International Workshop on Natural Language Analysis
in Software Engineering (NaturaLiSE) (2013), pp. 9–16.

[201] Ian Sommerville. Software Engineering. 9th ed. Harlow, Eng-
land: Addison-Wesley, 2010. isbn: 978-0-13-703515-1.

[202] Ian Sommerville. “Software engineering.” In: America: Pearson
Education Inc (2011).

[203] Ian Sommerville and Pete Sawyer. Requirements Engineering:
A Good Practice Guide. New York, NY, USA: Wiley, 1997.

[204] Ian Sommerville and Peter Sawyer. “Requirements Engineer-
ing: A Good Practice Guide.” In: 1997.

[205] Ezekiel Soremekun, Mike Papadakis, Maxime Cordy, and
Yves Le Traon. “Software fairness: An analysis and survey.”
In: arXiv preprint arXiv:2205.08809 (2022).

[206] Ronnie de Souza Santos, Felipe Fronchetti, Savio Freire, and
Rodrigo Spinola. Software Fairness Debt. 2024.

[207] James C. Spall. “Implementation of the simultaneous pertur-
bation algorithm for stochastic optimization.” In: IEEE Trans-
actions on Aerospace and Electronic Systems 34 (1998), pp. 817–
823. url: https : / / api . semanticscholar . org / CorpusID :

122669076.

[208] Jonas Stein, Ivo Christ, Nico Kraus, Maximilian Balthasar Man-
sky, Robert Müller, and Claudia Linnhoff-Popien. “Applying
QNLP to Sentiment Analysis in Finance.” In: 2023 IEEE Interna-
tional Conference on Quantum Computing and Engineering (QCE)
02 (2023), pp. 20–25. url: https://api.semanticscholar.
org/CorpusID:260125353.

https://doi.org/10.1109/NAturaLiSE.2013.6611715
https://api.semanticscholar.org/CorpusID:122669076
https://api.semanticscholar.org/CorpusID:122669076
https://api.semanticscholar.org/CorpusID:260125353
https://api.semanticscholar.org/CorpusID:260125353

bibliography 213

[209] P. Szymański and T. Kajdanowicz. “A scikit-based Python
environment for performing multi-label classification.” In:
ArXiv e-prints (2017). arXiv: 1702.01460 [cs.LG].

[210] Chuanqi Tao, Hongjing Guo, and Zhiqiu Huang. “Identifying
security issues for mobile applications based on user review
summarization.” In: Inf. Softw. Technol. 122 (2020), p. 106290.

[211] Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero,
and Sorin Drăghici. “Machine learning and its applications to
biology.” In: PLoS computational biology 3.6 (2007), e116.

[212] W. B. Tesfay, J. Serna, and K. Rannenberg. “PrivacyBot: Detect-
ing Privacy Sensitive Information in Unstructured Texts.” In:
Proceedings of Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS). 2019, pp. 53–60.
doi: 10.1109/SNAMS.2019.8931855.

[213] Lisa Torrey and Jude Shavlik. “Transfer learning.” In: Hand-
book of research on machine learning applications and trends: algo-
rithms, methods, and techniques. IGI global, 2010, pp. 242–264.

[214] László Tóth and László Vidács. “Comparative Study of The
Performance of Various Classifiers in Labeling Non-Functional
Requirements.” In: Inf. Technol. Control. 48 (2019), pp. 432–445.

[215] Grigorios Tsoumakas and Ioannis Katakis. “Multi-label clas-
sification: An overview.” In: International Conference on Data
Mining and Knowledge Discovery. Springer. 2007, pp. 1–15.

[216] V. Tzerpos and R.C. Holt. “MoJo: a distance metric for soft-
ware clusterings.” In: Sixth Working Conference on Reverse En-
gineering (Cat. No.PR00303). 1999, pp. 187–193. doi: 10.1109/
WCRE.1999.806959.

[217] Vasily Varenov and Aydar Gabdrahmanov. “Security Require-
ments Classification into Groups Using NLP Transformers.”
In: 2021 IEEE 29th International Requirements Engineering Con-
ference Workshops (REW) (2021), pp. 444–450.

https://arxiv.org/abs/1702.01460
https://doi.org/10.1109/SNAMS.2019.8931855
https://doi.org/10.1109/WCRE.1999.806959
https://doi.org/10.1109/WCRE.1999.806959

214 bibliography

[218] Dusan Varis and Ondřej Bojar. “Sequence Length is a Domain:
Length-based Overfitting in Transformer Models.” In: Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Ed. by Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih. Online and Punta
Cana, Dominican Republic: Association for Computational
Linguistics, 2021, pp. 8246–8257.

[219] Asimina Vasalou, Alastair J Gill, Fadhila Mazanderani, Chrysan-
thi Papoutsi, and Adam Joinson. “Privacy dictionary: A new
resource for the automated content analysis of privacy.” In:
Journal of the American Society for Information Science and Tech-
nology (JASIST) 62.11 (2011), pp. 2095–2105. issn: 1532-2882.
doi: 10.1002/asi.21610.

[220] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. “Attention is All you Need.” In: Neural Information
Processing Systems. 2017.

[221] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL].

[222] Sahil Verma and Julia Rubin. “Fairness Definitions Explained.”
In: Proceedings of the International Workshop on Software Fairness.
FairWare ’18. Gothenburg, Sweden: Association for Comput-
ing Machinery, 2018, 1–7. isbn: 9781450357463.

[223] Andreas Vogelsang and Markus Borg. “Requirements engi-
neering for machine learning: Perspectives from data scien-
tists.” In: 2019 IEEE 27th International Requirements Engineering
Conference Workshops (REW). IEEE. 2019, pp. 245–251.

[224] Gianmario Voria, Francesco Casillo, Carmine Gravino, Gemma
Catolino, and Fabio Palomba. “RECOVER: Toward the Auto-
matic Requirements Generation from Stakeholders’ Conver-
sations.” In: Under major revision in Transactions on Software
Engineering (2025).

https://doi.org/10.1002/asi.21610
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

bibliography 215

[225] Wentao Wang, Kavya Reddy Mahakala, Arushi Gupta, Nes-
rin Hussein, and Yinglin Wang. “A linear classifier based
approach for identifying security requirements in open source
software development.” In: J. Ind. Inf. Integr. 14 (2019), pp. 34–
40.

[226] Ronald L. Wasserstein and Nicole A. Lazar. “The ASA State-
ment on p-Values: Context, Process, and Purpose.” In: The
American Statistician 70.2 (2016), pp. 129–133. doi: 10.1080/
00031305.2016.1154108.

[227] S.M. Weiss and C.A. Kulikowski. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert Systems. San Mateo, CA: Morgan
Kaufmann, 1991.

[228] Colin M. Werner. “Towards A Theory of Shared Understand-
ing of Non-Functional Requirements in Continuous Software
Engineering.” In: 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion)
(2022), pp. 300–304. url: https://api.semanticscholar.org/
CorpusID:244405874.

[229] Colin Werner, Ze Shi Li, Derek Lowlind, Omar Elazhary,
Neil Ernst, and Daniela Damian. “Continuously Managing
NFRs: Opportunities and Challenges in Practice.” In: IEEE
Transactions on Software Engineering 48.7 (2022), 2629–2642. issn:
2326-3881.

[230] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and
Douglas C Schmidt. “ChatGPT Prompt Patterns for Improv-
ing Code Quality, Refactoring, Requirements Elicitation, and
Software Design.” In: arXiv preprint arXiv:2303.07839 (2023).

[231] Dominic Widdows. “Geometry and Meaning.” In: Computa-
tional Linguistics 32 (2004), pp. 155–158. url: https://api.
semanticscholar.org/CorpusID:17581.

[232] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson,
Björn Regnell, and Anders Wesslén. Experimentation in software
engineering. Springer Science and Business Media, 2012.

https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://api.semanticscholar.org/CorpusID:244405874
https://api.semanticscholar.org/CorpusID:244405874
https://api.semanticscholar.org/CorpusID:17581
https://api.semanticscholar.org/CorpusID:17581

216 bibliography

[233] David H. Wolpert. “Stacked generalization.” In: Neural Net-
works 5.2 (1992), pp. 241–259. issn: 0893-6080. doi: https:
//doi.org/10.1016/S0893-6080(05)80023-1. url: https://
www.sciencedirect.com/science/article/pii/S0893608005800231.

[234] Xusheng Xiao, Amit M. Paradkar, Suresh Thummalapenta,
and Tao Xie. “Automated extraction of security policies from
natural-language software documents.” In: SIGSOFT FSE.
2012.

[235] G. Xu, C. Qi, H. Yu, S. Xu, C. Zhao, and J. Yuan. “Detecting
Sensitive Information of Unstructured Text Using Convolu-
tional Neural Network.” In: Proceedings of International Con-
ference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). 2019, pp. 474–479. doi: 10.1109/CyberC.
2019.00087.

[236] Muhammad Younas, Dyg. Norhayati Abg. Jawawi, Imran
Ghani, and Muhammad Arif Shah. “Extraction of non-functional
requirement using semantic similarity distance.” In: Neural
Computing and Applications 32 (2019), pp. 7383–7397.

[237] Muhammad Younas, Karzan Wakil, Dayang Norhayati Abang
Jawawi, Muhammad Arif Shah, and Ahmad Mustafa. “An
Automated Approach for Identification of Non-Functional
Requirements using Word2Vec Model.” In: International Journal
of Advanced Computer Science and Applications (2019).

[238] Jianlong Zhou and Fang Chen. Human and Machine Learning.
Springer, 2018.

[239] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and
Yang Liu. “Devign: Effective vulnerability identification by
learning comprehensive program semantics via graph neural
networks.” In: Advances in Neural Information Processing Sys-
tems. 2019, pp. 10197–10207.

[240] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran
Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. “Large lan-
guage models are human-level prompt engineers.” In: arXiv
preprint arXiv:2211.01910 (2022).

https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://doi.org/10.1109/CyberC.2019.00087
https://doi.org/10.1109/CyberC.2019.00087

bibliography 217

[241] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms.
1st. Chapman & Hall/CRC, 2012. isbn: 1439830037.

[242] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar,
Bin Liu, Florian Schaub, Shomir Wilson, Norman M. Sadeh,
Steven M. Bellovin, and Joel R. Reidenberg. “Automated Anal-
ysis of Privacy Requirements for Mobile Apps.” In: Network
and Distributed System Security Symposium. 2017.

R I N G R A Z I A M E N T I

“Com’è cominciata io non saprei, la storia infinita con te...”
Questa la canzone che mi è balzata in mente volendo ringraziare

chi e cosa ha reso quest’avventura incredibile e indimenticabile.
Potrei partire dalla curiosità di comprendere come funzionasse il

mondo della ricerca, quando, nell’estate 2021, chiesi agli advisors di
tesi magistrale, Carmine e Vincenzo, di “poter discutere su eventuali
opportunità nella ricerca, anche per farmi un’idea di come e se continuare in
quest’ambito”. Ma era il periodo in cui stavano aiutandomi a rendere
il lavoro di tesi una pubblicazione scientifica, quindi ero già immerso
in questo mondo senza rendermene conto. Potrei partire dal lavoro
di tesi magistrale, ma anche qui ci sono stati eventi e persone che han
reso unica questa scelta. E potrei andare indietro all’infinito probabil-
mente, così come infinite sono le persone che vorrei ringraziare in
queste poche righe. Per questo motivo andrò un po’ a caso, così come
a caso è iniziata la mia avventura all’Università di Salerno. Proba-
bilmente è a quest’ultima che sono infinitamente grato, per avermi
donato innumerevoli esperienze, difficoltà, ansie, paure, depressioni,
gioie, amori, amici, soddisfazioni, opportunità e speranze. Grazie per
esser stata fonte di vita di questi ultimi 10 anni, e grazie per aver dato
da bere alla mia sete di conoscenza. Certo, ora non mi pare il caso
di dilungarmi, ma son lieto di aver avuto l’occasione di essere tuo
studente, così come lieto sono per gli advisors che mi hai assegnato,
Carmine e Vincenzo.

Carmine e Vincenzo, io non solo sono onorato, ma vi ammiro per
il coraggio e la pazienza che avete avuto nell’introdurmi e guidarmi
nel mondo accademico. Chi ve l’ha fatto fare? Grazie infinite per la
libertà concessami nello scegliere le diverse opzioni che si sono poste
durante questi anni, ma soprattutto per l’umanità ed il supporto
durante i momenti difficili, sia accademici che non. Mi avete fatto
intuire cosa significhi essere professore universitario, o meglio, mi
avete dato dato un’idea di cosa comporti, nonché della comprensione
e della pazienza che bisogna avere con noi studenti.

219

220

Grazie per avermi invitato nella mia seconda dimora di questi
ultimi 3 anni, il SeSa Lab. Ricordo i primi giorni di completo spaesa-
mento, come a dire: “Ma io che ci faccio qui?”. E poi le braciate, le
parigine, i panini, le “mezze” giornate di lavoro. Quanta vita abbiam
condiviso, quanto supporto mi hai donato e quanti punti di vista dif-
ferenti mi hai offerto! Sinceramente non credo avrei potuto chiedere
di meglio! È stato un onore ed un privilegio poter collaborare, e, se
penso al gruppo iniziale ed al gruppo attuale, direi che sono due
laboratori differenti! Son contento ed orgoglioso di questa crescita,
spero di aver contribuito anche in minima parte, perché non puoi im-
maginare quanto bene e quante vicissitudini mi hai donato! Grazie a
te ho conosciuto tantissime persone e fatto esperienze di vita uniche:
partecipazione a workshops, eventi, congressi, conferenze, progetti
nazionali e internazionali, periodo all’estero.

A proposito di quest’ultimo, voglio ringraziare il SEART group, per
avermi accolto e ospitato nella fantastica città di Lugano. Dai paesaggi
straordinari alle calorose persone con le quali mi son confrontato e
confortato, e poi l’USI e il suo modus operandi, quanta precisione e
quanta fantasia! Grazie per aver reso la mia prima esperienza lontano
da casa unica e indimenticabile, mi auguro di esser stato di piacevole
compagnia e di avervi lasciato un ricordo felice, perché quei giorni
son stati per me infinitamente preziosi.

Anche se devo ammettere che la fortuna è sempre stata dalla mia
parte. La fortuna di un padre che, con l’esempio e non con le parole, ti
scolpisce nell’anima il valore dell’umiltà e dell’altruismo, che diventa
una furia per una luce lasciata accesa o cinque minuti in più sotto la
doccia, ma che riesce a rendere ogni strada meno pesante, ogni scelta
meno spaventosa, perché sai che sarà lì, senza esitare un secondo,
pronto a sostenerti, a capirti e, soprattutto, a sopportarti.

La fortuna di una madre che ti avvolge d’amore in ogni gesto, che
si fa carico delle preoccupazioni di tutti senza mai tirarsi indietro,
che lotta ogni giorno, spesso in silenzio, per vederti felice. Una donna
capace di dimenticare se stessa pur di regalare un sorriso alla sua
famiglia, un amore instancabile che non chiede nulla in cambio se
non di saperti sereno.

221

Non ho trovato nulla al mondo che mi tocchi il cuore più di voi,
quando crollate di sonno dopo giornate di sacrifici immensi. È in quei
momenti che invidio tutta la vostra forza e tutta la vostra fragilità.

E poi mio fratello e mia sorella, dimostrazione che la vostra eredità
più grande vive in loro: rivedo la stessa luce, la stessa tempra, la stessa
caparbietà che ci ha cresciuti. Ecco cosa vedo in loro: due guerrieri,
cadono e non si arrendono mai! E ogni volta che la vita li mette in
ginocchio si rialzano più forti, più fieri, più vivi. Grazie, Armando e
Stella, perché non immaginate quanta energia mi trasmettete, quanto
mi consolate, quanto mi spronate: siete i miei complici silenziosi,
la parte di me che conosce tutto senza dover parlare, le radici che
camminano accanto a me.

Un infinito grazie va ai miei preziosi amici. Non vi ho mai raccon-
tato tutto, forse non vi ho mai raccontato nemmeno un pizzico, ma è
questo che vi rende speciali. Con voi non c’è bisogno di scavare nelle
mie vicissitudini, vi basta uno sguardo, una battuta tagliente, un
insulto ben piazzato, e mi fate capire che sapete esattamente chi sono.
Siete quelli che mi prendono in giro senza pietà, che trasformano le
fatiche in risate, e che, senza accorgermene, mi offrono sempre nuove
prospettive. Con voi non devo spiegare: posso semplicemente essere.
Sapere della vostra presenza, anche a distanza, nell’ironia tagliente e
sgangherata, è una delle certezze più preziose che ho.

GRAZIE
A tutti quelli che non si son sentiti toccati da queste poche righe,

e a chi, purtroppo, non c’è più.

GRAZIE
A tutti, per esserci stati ed esserci proprio così come siete.

Questa tesi è vostra!

GRAZIE
Per permettermi di essere come sono.

Lascia un pensiero nella nostra tesi!

La borsa di dottorato è stata cofinanziata con risorse del

Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 (CCI 2014IT16M2OP005), risorse FSE REACT-EU,

Azione IV.4 “Dottorati e contratti di ricerca su tematiche dell’innovazione” e Azione IV.5 “Dottorati su tematiche Green”

	Abstract
	Contents
	List of Figures
	List of Tables
	 Inferno
	1 The Need for Automating Non-Functional Requirements Detection
	1.1 Research Gaps
	1.2 Research Statement
	1.3 Thesis Structure and Contributions

	 List of Publications
	2 Background
	2.1 Non-Functional Requirements Classification
	2.2 Privacy and Security Requirements Identification
	2.3 Fairness as Non-Functional Requirement

	 Purgatorio
	3 Detecting Privacy Requirements from User Stories
	3.1 Introduction
	3.2 Methodology
	3.2.1 User Stories as Input
	3.2.2 Lexicon-Based Privacy Features
	3.2.3 NLP-Based Features
	3.2.4 Deep Neural Network Architectures
	3.2.5 Transfer Learning for Privacy Disclosure Detection

	3.3 Empirical study design
	3.3.1 Research Questions
	3.3.2 Data Collection
	3.3.3 Evaluation Criteria
	3.3.4 Validation Method

	3.4 Analysis of the Results
	3.4.1 Is CNNNLP accurate at least as conventional machine learning methods to detect privacy content when using NLP-based features?
	3.4.2 Is CNNPW accurate at least as conventional machine learning methods to detect privacy content when using PW features?
	3.4.3 Are predictions obtained with PDTL better than those achieved with CNNNLP and CNNPW?

	3.5 Findings for Researchers and Practitioners
	3.6 Threats to Validity

	4 ReFAIR: a Context-Aware Recommender for Fairness in RE
	4.1 Introduction
	4.2 Building a Dataset of User Stories
	4.2.1 Requirements Format Selection
	4.2.2 A Taxonomy of Fairness-Related Application Domains and ML Tasks
	4.2.3 Synthetic Generation of User Stories
	4.2.4 Synthetic Dataset Validation

	4.3 The ReFair Framework
	4.3.1 User Story Preprocessing
	4.3.2 Classification Analysis
	4.3.3 Sensitive Features Recommendation
	4.3.4 Prototypical Implementation

	4.4 Empirical Evaluation
	4.4.1 Addressing RQ1: The ReFair Application Domain Classification Performance
	4.4.2 Addressing RQ2: The ReFair Machine Learning Tasks Classification Performance
	4.4.3 Addressing RQ3: The ReFair Sensitive Feature Recommendation Capabilities

	4.5 Threats to Validity

	5 Beyond Domain Dependency in Security Requirements Identification
	5.1 Introduction
	5.2 Empirical Study Design
	5.2.1 Research questions
	5.2.2 Datasets
	5.2.3 Evaluation criteria

	5.3 Results and Discussion
	5.3.1 RQ1 How effectively can shallow machine learning algorithms, based on word embeddings, identify security-related requirements coming from the same domain?
	5.3.2 RQ2 How effectively can shallow machine learning algorithms, based on word embeddings, identify security-related requirements coming from different domains?
	5.3.3 RQ3 How effective can pre-training context in BERT transformers be on the detection of security-related requirements?
	5.3.4 Implications

	5.4 Threats to validity

	6 Quantum Natural Language Representations for NFRs Classification
	6.1 Introduction
	6.2 Introduction to Quantum NLP
	6.3 Empirical Study Design
	6.3.1 Motivations of Research Questions
	6.3.2 Dataset
	6.3.3 Research Methodology
	6.3.4 Evaluation Criteria

	6.4 Analysis of the Results
	6.4.1 RQ1. How effectively can shallow machine learning algorithms classify non-functional requirements when represented with word embeddings techniques?
	6.4.2 RQ2. How effectively can a basic model classify non-functional requirements when represented as string diagrams and parameterised as tensor networks?
	6.4.3 RQ3. How effectively can quantum models classify non-functional requirements when represented as string diagrams and parameterised as quantum circuits?

	6.5 Discussion and Research Roadmap
	6.5.1 Lesson learned
	6.5.2 Future Research Directions

	6.6 Threats to Validity

	 Paradiso
	7 Discussion and Research Directions
	7.1 Answers to Research Questions
	7.2 Findings of the research
	7.3 Implications for researchers and practitioners
	7.3.1 For Researchers
	7.3.2 For Practitioners

	8 Conclusion
	 Online Material
	 Bibliography

